

Established in 1998 - An ISO 9001:2008 Certified Institution

Department of EEE Question bank

Year and Semester Prepared by

Course Code and Name : EE 6403 Discrete Time systems and Signal Processing : II year IV Semester

: P.Nedumal Pugazhenthi, Associate professor/ EEE

UNIT-I – INTRODUCTION PART A (2 marks)

- 1. Define Signal.
- 2. Define system.
- 3. What are the steps involved in digital signal processing?
- 4. Give some applications of DSP?
- 5. Write the classifications of DT Signals.
- 6. What is an Energy and Power signal?
- 7. What is Discrete Time Systems?
- 8. Write the Various classifications of Discrete-Time systems.
- 9. Define linear system
- 10. Define Static & Dynamic systems
- 11.Define causal and non causal signals.
- 12. Define odd and even signal
- 13. Define deterministic and random signal
- 14. Define periodic and Aperiodic signals.
- 15. Define causal and non causal systems
- 16.Define stable and unstable system
- 17.Define time variant and time invariant system
- 18. Define recursive and non recursive system
- 19. Define IIR & FIR systems
- 20. Why linear convolution is important in DSP?
- 21. What is zero padding?
- 22.List the difference between Linear and Circular Convolution
- 23. What are the types of convolutions?
- 24. Define sampling theorem
- **25.Define Aliasing**
- 26. What is sampling?
- 27. What is quantization?
- 28. What are the standard discrete time signals?
- 29. Define impulse and unit step signal.
- 30. What are the mathematical operations performed over discrete time signals?

Established in 1998 - An ISO 9001:2008 Certified Institution

Department of EEE Question bank

(4)

(8)

(8)

- 31. Given a continuous time signal $x(t)=2\cos 500\pi t$. What is the Nyquist rate and fundamental frequency of the signal?
- 32. Consider the analog signal $x(t)=3 \cos 50\pi t + 10 \sin 300 \pi t \cos 100 \pi t$. What is the Nyquist rate for this signal.
- 33. Test whether the system governed by the relation is linear time invariant or not?

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

34. Determine the fundamental period of the signal

$$x[n] = \cos\left(\frac{30\pi n}{105}\right)$$

35. Check whether the signal defined by $x[n] = [5(1/2)^n + 4(1/3)^n] u(n)$ is causal.

PART B & PART C

- 1. What is meant by energy and power signal? Determine whether the following signals are energy or power or neither energy nor power signals. (12)
 - $x_1[n] = \left(\frac{1}{2}\right)^n u[n]$ $x_2[n] = sin\left(\frac{\pi n}{6}\right)$ $x_3[n] = e^{\left(j\frac{\pi n}{3} + \frac{\pi}{6}\right)}$ • $x_4[n] = e^{2n}u[n]$
- 2. Explain the concept of quantization
- 3. Check for following systems are linear, causal, time invariant, stable, static (16)

 - $y[n] = x \left(\frac{1}{2n}\right)$ $y[n] = \sin(x[n])$
- 4. Check whether the following are periodic
 - $x[n] = \cos(3\pi n)$
 - $x[n] = \sin(3n)$

5. Check whether the following are energy or power signals.

- $x_1[n] = \left(\frac{1}{2}\right)^n u[n]$ $x_3[n] = Ae^{(j\omega n)}$
- 6. What do you mean by Nyquist rate? Give its significance. (6)(10)
- 7. Explain the classification of discrete signal. 8. Explain the classification of discrete systems.
- (8) 9. Explain neatly about the standard signals available (8)
- 10. Explain neatly about the operations performed on a signal (8)

II Year EEE

IV Semester

Established in 1998 - An ISO 9001:2008 Certified Institution

Department of EEE Question bank

(16)

- 11.Determine whether the system is linear, time invariant, memory less and causal. $y[n] = x[n^2]$
- $y[n] = x[n^2]$ (8) 12. Determine whether the following is an energy signal or power signal (8)

(1)
$$x_1(n) = 6\cos\left[\frac{\pi}{2}n\right]$$

(2) $x_2(n) = 3[0.5]^n u(n)$

- 13. Starting from first principles, state and explain sampling theorem both in time domain and in frequency domain. (16)
- 14. Determine the response of the following systems to the input signal

$$x(n) = \begin{cases} |n|, -3 \le n \le 3\\ 0, & \text{otherwise} \end{cases}$$

(i)
$$x_1(n)=x(n-2)\delta(n-3)$$

(ii) $x_2(n)=x(n+1)u(n-1)$
(iii) $y(n) = \frac{1}{3}[x(n+1) + x(n) + x(n-1)]$
(iv) $y(n)=max[x(n+1), x(n), x(n-1)]$
(v) Find the even and odd components of given $x(n)$

- 15. A discrete time systems can be
 - Static or dynamic
 - Linear or non Linear
 - Time invariant or time varying
 - Stable or unstable

Examine the following systems with respect to the properties above

- y(n)=x(n)+nx(n+1).
- $y(n)=x(n)\cos(x(n))$
- 16. Check the causality and stability of the systems y(n)=x(-n)+x(n-2)+x(2n-1). (8)
- 17. Check the system for linearity and time invariance $y(n)=(n-1)x^2(n)+c$. (8)
- 18.Explain the digital signal processing system with necessary sketches and give its merits and demerits. (16)

UNIT-II DISCRETE TIME SYSTEM ANALYSIS PART A(2 marks)

- 1. Define Z transform.
- 2. What are the basic elements used to construct the block diagram of discrete time system?
- 3. What is ROC in Z-Transform?

EE 6403 Discrete time systems and signal processing

II Year EEE

IV Semester

Established in 1998 - An ISO 9001:2008 Certified Institution

Department of EEE Question bank

(6)

(10)

- 4. List any four properties of Z-Transform.
- 5. What are the different methods of evaluating inverse z-transform?
- 6. What are the properties of convolution?
- 7. Define DTFT.
- 8. State the condition for existence of DTFT?
- 9. List the properties of DTFT.
- 10. What is the DTFT of unit sample?
- 11. Define Zero padding.
- 12. Define step and impulse response of a discrete time system.
- 13. Define convolution sum or discrete convolution or linear convolution.
- 14. State parseval's theorem.
- 15. Find Z transform of $x(n) = \{1, 2, 3, 4\}$
- 16. State frequency response of discrete time system

PART B & PART C

1. Find the Z transform and its ROC of

$$x(n) = \left[\frac{-1}{5}\right]^{n} u(n) + 5\left[\frac{1}{2}\right]^{-n} u(-n-1)$$

2. A system is described by the difference equation given below

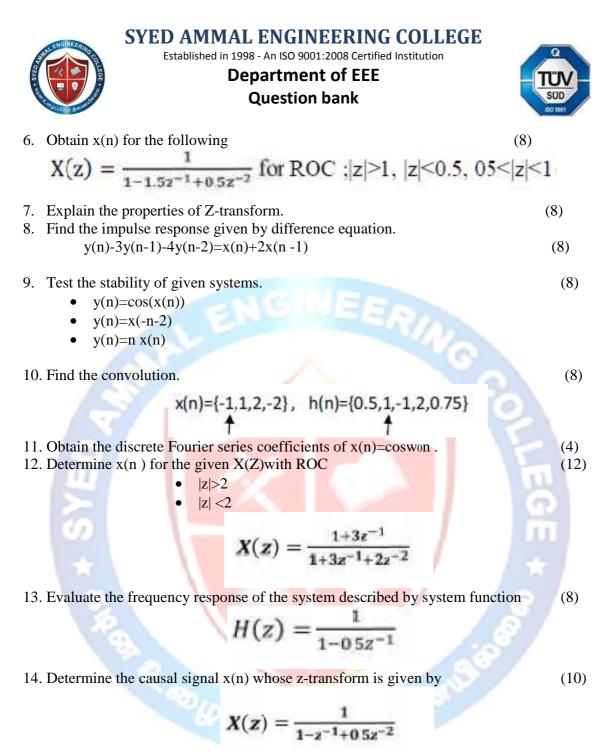
$$\mathbf{y}(\mathbf{n}) - \left[\frac{1}{2}\right]\mathbf{y}(\mathbf{n} - \mathbf{1}) = 5\mathbf{x}(\mathbf{n})$$

Determine the solution, when the input is

$$\mathbf{x}(\mathbf{n}) = \left[\frac{1}{5}\right]^{\mathbf{n}} \mathbf{u}(\mathbf{n})$$

and the initial condition is given by y(-1)=1, using z transform.

3. Determine the impulse response of the system described by the difference equation using Z transform and discuss its stability. (10)


$$y(n) = y(n-1) - \begin{bmatrix} 1 \\ 2 \end{bmatrix} y(n-2) + x(n) + x(n-1)$$

linear convolution of x(n)={2,4,6,8,10} with h(n)={1,3,5,7,9} (6)

- 4. Find the linear convolution of $x(n) = \{2,4,6,8,10\}$ with $h(n) = \{1,3,5,7,9\}$
- 5. Determine the Z transform of

(1)
$$x(n)=a^n \cos w_{0n} u(n)$$
 (5)
(2) $x(n)=3^n u(n)$ (3)

$$(2) x(n) = 3^{n} u(n)$$

II Year EEE

- 15. Determine the z-transform of the signal $x(n)=(\cos w_0n)u(n)$. (6)
- 16. Find the z-transform and ROC of

$$x[n] = r^n \cos(n\theta) u[n]$$

17. Find Inverse z-transform of

$$X(Z) = \frac{Z}{(3z^2 - 4z + 1)}$$

ROC |z|>1

EE 6403 Discrete time systems and signal processing

II Year EEE

IV Semester

(8)

(8)

Established in 1998 - An ISO 9001:2008 Certified Institution

Department of EEE Question bank

- 18. Determine the DTFT of the given sequence $x[n]=a^n(u(n)-u(n-8)), |a|<1$. 19. Prove the linearity and frequency shifting theorems of the DTFT.
- (8)(8) (10)

20. Explain neatly with proof the properties of DTFT

UNIT III Discrete Fourier transform and computation PART A(2 marks)

- 1. What is DFT?
- 2. Define N point DFT.
- 3. What is DFT of unit impulse $\delta(n)$?.
- 4. List the properties of DFT.
- 5. State Linearity property of DFT.
- 6. Why the result of circular and linear convolution is not same?
- 7. What is the disadvantage of direct computation of DFT?
- 8. What is the way to reduce number of arithmetic operations during DFT computation?
- 9. What is the computational complexity using FFT algorithm?
- 10. How linear filtering is done using FFT?
- 11. What is zero padding? What are its uses?
- 12. Calculate the number of multiplications needed in the calculation of DFT using FFT algorithm with using FFT algorithm with 32-point sequence.
- 13. What is FFT?
- 14. What is a decimation-in-time algorithm?
- 15. What are the differences and similarities between DIF and DIT algorithms?
- 16. What are the applications of FFT algorithms?
- 17. What is a decimation-in-frequency algorithm?

PART B & PART C

- 1. State and prove convolution property of DFT.
- 2. Find the inverse DFT of

(10) $X(K) = \{7, -\sqrt{2} - j\sqrt{2}, -j, \sqrt{2} - j\sqrt{2}, 1, \sqrt{2} + j\sqrt{2}, j, -\sqrt{2} + j\sqrt{2}\}$

- 3. Derive the decimation-in time radix-2 FFT algorithm and draw signal flow graph for 8point sequence. (8)
- 4. Using FFT algorithm, compute the DFT of $x(n) = \{2, 2, 2, 2, 1, 1, 1, 1\}$. (8)
- 5. Explain the following properties of DFT.
 - Convolution. •
 - Time shifting
 - Conjugate Symmetry.
- 6. Compute the 4 point DFT of $x(n) = \{0, 1, 2, 3\}$.
- 7. Explain the Radix 2 DIF FFT algorithm for 8 point DFT.
- 8. Obtain the 8 point DFT using DIT FFT algorithm for $x[n] = \{1,1,1,1,1,1,1,1\}$ (8)

IV Semester

(6)

(10)

(6)

(8)

Established in 1998 - An ISO 9001:2008 Certified Institution

(10)

(6)

(4)

(12)

- 9. An 8-point sequence is given by x(n)={2, 2, 2, 2, 1,1,1,1}. Compute 8-point DFT of x(n) by radix DIT-FFT method also sketch the magnitude and phase. (16)
- 10. Determine the response of LTI system when the input sequence is $x(n) = \{-1, 1, 2, 1, -1\}$ using radix 2 DIF FFT. The impulse response is $h(n) = \{-1, 1, -1, 1\}$. (16)
- 11. Describe the following properties of DFT.
 - Time reversal
- Circular convolution.
- 12. Obtain the circular convolution of $x_1(n) = \{1, 2, 2, 1\}$
 - $x_2(n) = \{1, 2, 3, 1\}$
- 13. Find the output y[n] of a filter whose impulse response is h[n]={1,1,1} and input signal x[n]={3,-1,0,1,3,2,0,1,2,1} using overlap save method.
- 14. The first five points of the eight point DFT of a real valued sequence are {0.25, 0.125 j0.3018, 0, 0.125 j0.0518, 0}. Determine the remaining three points.
- 15. Compute the eight point DFT of the sequence x=[1,1,1,1,1,1,1], using Decimation-in-Frequency FFT algorithm. (12)
- 16. Determine 8 point DFT of the sequence $x(n) = \{1,1,1,1,1,1,0,0,0\}$.
- 17. Find circular convolution of the sequence using concentric circle method $x_1 = \{1,1,2,1\}$ and $x_2 = \{1,2,3,4\}$ (4)

UNIT-IV - DESIGN OF DEGITAL FILTER PART A(2 marks)

- 1. Define IIR filter?
- 2. What are the various methods to design IIR filters?
- 3. Which of the methods do you prefer for designing IIR filters? Why?
- 4. What is the main problem of bilinear transformation?
- 5. What is prewarping?
- 6. State the frequency relationship in bilinear transformation?
- 7. Where the j ω axis of s-plane is mapped in z-plane in bilinear transformation?
- 8. Where left hand side and right hand side are mapped in z-plane in bilinear transformation?
- 9. What is the frequency response of Butterworth filter?
- 10. Which filter approximation has ripples in its response?
- 11. Can IIR filter be designed without analog filters?

Established in 1998 - An ISO 9001:2008 Certified Institution

Department of EEE Question bank

- 12. What is the advantage of designing IIR Filters using pole-zero plots?
- 13. Compare the digital and analog filter.
- 14. What are the advantages and disadvantages of digital filters?
- 15. What is impulse invariant transformation?
- 16. How analog poles are mapped to digital poles in impulse invariant transformation?
- 17. What is the importance of poles in filter design?
- 18. Why an impulse invariant transformation is not considered to be one-to one?
- 19. What is bilinear transformation?
- 20. How the order of the filter affects the frequency response of Butterworth filter?
- 21. Write the properties of Chebyshev type -1 filters.
- 22. Compare the Butterworth and Chebyshev Type-1 filters.
- 23. What is FIR filters?
- 24. What are the different types of filters based on impulse response?
- 25. What are the different types of filter based on frequency response?
- 26. What are the techniques of designing FIR filters?
- 27. State the condition for a digital filter to be causal and stable.
- 28. What is the reason that FIR filter is always stable?
- 29. What are the properties of FIR filter?
- 30. How phase distortion and delay distortions are introduced?
- 31. Write the steps involved in FIR filter design.
- 32. What are the advantages of FIR filters?
- 33. What are the disadvantages of FIR filters?
- 34. What is the necessary and sufficient condition for the linear phase characteristic of an FIR filter?
- 35. What are the conditions to be satisfied for constant phase delay in linear phase FIR filters?
- 36. How constant group delay & phase delay is achieved in linear phase FIR filters?
- 37. What are the possible types of impulse response for linear phase FIR filters?
- 38. List the well-known design techniques of linear phase FIR filters.
- 39. What is Gibb's phenomenon (or Gibb's Oscillation)?
- 40. What are the desirable characteristics of the frequency response of window function?
- 41. Write the procedure for designing FIR filter using frequency-sampling method.
- 42. What are the drawback in FIR filter design using windows and frequency sampling method? How it is overcome?
- 43. List the characteristics of FIR filters designed using windows.
- 44. What is the mathematical problem involved in the design of window function?
- 45. List the desirable features of Kaiser Window spectrum.

PART B & PART C

1. Obtain cascade and parallel realization for the system having difference equation y(n)+0.1y(n-1)-0.2y(n-2)=3x(n)+3.6x(n-1)+0.6x(n-2)

(8)

Established in 1998 - An ISO 9001:2008 Certified Institution

....

Department of EEE Question bank

2. Design a length-5 FIR band reject filter with a lower cut-off frequency of 2KHz, an upper cut-off frequency of 2.4 KHz, and a sampling rate of 8000Hz using Hamming window.

(8)

(6)

- 3. Explain impulse invariant method of designing IIR filter.
- 4. Design a second order digital low pass Butterworth filter with a cut-off frequency 3.4KHz at a sampling rate of 8 KHz using bilinear transformation. (10)
- 5. Design an FIR linear phase, digital filter approximating the ideal frequency response (12)

$$H_{d}(w) = \begin{cases} 1, & |w| \le \frac{\pi}{6} \\ 0, & \frac{\pi}{6} < |w| \le \pi \end{cases}$$

- 6. Determine the coefficients of a 25 tap filter based on the window method with a rectangular window. (16)
- 7. Convert the analog filter with system function into a digital IIR filter by means of the impulse invariance method. (8)

$$G(s) = \frac{(s+0.1)}{(s+0.1)^2 + 9}$$

8. Realize the following with minimum number of multipliers and direct form (8)

$$H(z) = \frac{1}{3} + \frac{1}{4}z^{-1} + \frac{3}{2}z^{-2} + \frac{3}{2}z^{-3} + \frac{1}{4}z^{-4} + \frac{1}{3}z^{-5}$$

9. Design a butterworth filter using impulse invariance method for the following specifications (12)

$$\begin{cases} 0.8 \le |H(e^{j\omega})| \le 1 \quad ; \quad 0 \le \omega \le 0.2\pi \\ |H(e^{j\omega})| \le 0.2 \quad ; \quad 0.6\pi \le \omega \le \pi \end{cases}$$

10. Design a filter with desired frequency response (16)

$$\begin{cases} e^{-j3\omega}; & \frac{-3\pi}{4} \le \omega \le \frac{3\pi}{4} \\ 0; & otherwise \end{cases}$$

Using Hanning window for N=7

11. For the analog transfer function

$$H(s) = \frac{2}{(s+1)(s+3)}$$

Determine H(z) using bilinear transformation with T=0.1 sec.

EE 6403 Discrete time systems and signal processing

II Year EEE

IV Semester

Established in 1998 - An ISO 9001:2008 Certified Institution

Department of EEE Question bank

12. Realize the following using cascade and parallel form

(12)

$H(z) = \frac{3 + 3.6z^{-1} + 0.6z^{-2}}{1 + 0.1z^{-1} - 0.2z^{-2}}$

13. Explain how an analog filter maps into a digital filter in Impulse Invariant transformation

(4)

UNIT V - DIGITAL SIGNAL PROCESSOR PART A(2 marks)

- 1. What are the classifications of Digital Signal Processors?
- 2. What are the factors that influence selection of DSPs?
- 3. Write short notes on general purpose DSP processors
- 4. List the types of special purpose DSP processors.
- 5. Briefly explain about Harvard architecture.
- 6. Draw the Von Newmann Architecture.
- 7. Draw the Harvard architecture.
- 8. Draw the VLIW architecture
- 9. What are the types of MAC is available?
- 10. What are four phases available in pipeline technique?
- 11. What is pipelining depth?
- 12. Write down the name of the addressing modes.
- 13. What are the instructions used for block transfer in C5X Processors?
- 14. Briefly explain about the dedicated register addressing modes.
- 15. Briefly explain about bit-reversed addressing mode?
- 16. Briefly explain about circular addressing mode.
- 17. Write the name of various part of C5X hardware.
- 18. Write short notes about arithmetic logic unit and accumulator.
- 19. Write short notes about parallel logic unit.
- 20. What is meant by auxiliary register file?
- 21. Write short notes about circular registers in C5X.
- 22. What are the factors that influence selection of DSPs?
- 23. What are the applications of PDSPs?
- 24. Give some examples for fixed point DSPs.
- 25. Give some example for floating point DSPs?
- 26. What is pipelining?
- 27. What are the advantages of VLIW architecture?
- 28. What are the disadvantages of VLIW architecture?
- 29. What is the pipeline depth of TMS320C50 and TMS320C54x?
- 30. What are the different buses of TMS320C5x?
- 31. Give the functions of program bus?
- 32. Give the functions of program address bus?

Established in 1998 - An ISO 9001:2008 Certified Institution

Department of EEE Question bank

- 33. Give the functions of data read bus?
- 34. Give the functions of data read address bus?
- 35. What are the different stages in pipelining?
- 36. List the various registers used with ARAU.
- 37. What are the elements that the control processing unit of 'C5x consists of ?
- 38. What is the function of parallel logic unit?
- 39. List the on chip peripherals in 'C5x.
- 40. What are the arithmetic instructions of 'C5x?
- 41. What are the shift instructions?
- 42. What are the general purpose I/O pins?
- 43. What are the logical instructions of 'C5x?
- 44. What are load/store instructions?
- 45. Mention the addressing modes available in TMS320C5X processor?
- 46. What is function of NOP instruction?
- 47. What is function of ZAC instruction?
- 48. Give the function of BIT instruction.
- 49. What is use of ADD instruction?
- 50. Give the advantages of DSPs?

PART B & PART C

1.	Draw the block diagram of Harvard architecture and explain.	LU	(8)
2.	Explain the advantages and disadvantages of VLIW architecture.		(8)
3.	Write short notes on		
	• Memory mapped register addressing	-	
	Circular addressing mode	6	
	• Auxiliary registers	(6+6+4)
4.	Explain various addressing modes of a digital signal processor.	27.	(16)
5.	Draw the functional block diagram of a digital signal processor and explain	in.	(16)
6.	Explain Von Neumann, Harvard architecture and modified Harvard archit	ecture fo	r the
	computer.		(16)
7.	Explain how convolution is performed using a single MAC unit.		(8)
8.	What is MAC unit? Explain its functions.		(8)
9.	Explain about pipelining in DSP.		(8)
	. Discuss the addressing modes used in programmable DSP's		(8)
11	. Explain the architecture of TMS320C50 with a neat diagram.		(16)
12. Describe the Architectural details and features of a DSP processor. ((16)