TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS MA 6351 **Regulation 2013 Anna University** Il year All Branches. Dept. of Mathematics. 9128-SAEC, Ramnad.

FOURIER SERIES

Find the sum of the Fourier series of $f(x) = x + x^2 in$ $-\pi < x < \pi$ at $x = \pi$.

$x = \pi$ is a discontinuous point in this interval. Therefore $f(x) = \frac{1}{2} [-\pi + (-\pi)^2 + \pi + \pi^2]$ $=\pi^2$

What is known as harmonic analysis?

The process of finding the Harmonics in the Fourier expansion of a function numerically is known as Harmonic analysis.

State the Dirichlet's conditions for the existence of Fourier series of f(x) in $[0,2\pi]$ with period 2π .

A function f(x) defined in (c, c+2*l*) can be expanded as an infinite trigonometric series of the form

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l},$$

provided

1.f(x) is single valued and finite in (c,c+2l).
2.f(x) is continuous or piece-wise continuous with finite number of finite discontinuities in (c,c+2l).
3.f (x) has no or finite number of maxima or minima in (c,c+2l) are satisfied,then
the above 3 conditions are called the Dirichlet's conditions.

Question 4 let f(x) be defined in $(0,2\pi)$ by $f(x) = \begin{cases} \frac{1 + \cos x}{\pi - x}, & 0 < x < \pi \\ \cos x, & \pi < x < 2\pi \end{cases}$ and $f(x+2\pi) = f(x)$ with period 2π .

Solution 4

$$\lim_{x \to \pi^{-}} f(x) = \lim_{x \to \pi^{-}} \frac{-\sin x}{-1} \text{ (using 1 hospital's rule)}$$
$$= 0$$
$$\lim_{x \to \pi^{+}} f(x) = \cos \pi$$
$$= -1$$
$$f(x) = \frac{1}{2} [f(\pi^{-}) + f(\pi^{+})] \quad (\text{average})$$
$$= \frac{0 + (-1)}{2} = -\frac{1}{2}$$

Question 5 (cosx, if 0 < x

If $f(x) = \begin{cases} cosx, & if \ 0 < x < \pi \\ 50, & if \ \pi < x < 2\pi \end{cases}$ and $f(x) = f(x+2\pi)$ for all x, find the sum of the Fourier series of f(x)at $x = \pi$.

Solution 5

x=
$$\pi$$
 is a discontinuous point.
Sum of the Fourier series of the function
f(x) at x= π is,
f(π) = $\frac{f(\pi -) + f(\pi +)}{2}$
= $\frac{\cos \pi + 50}{2}$
= $\frac{-1 + 50}{2}$
f(π) = $\frac{49}{2}$

Find the coefficient b_5 of cos5x in the Fourier cosine series of the function $f(x)=\sin5x$ in the interval $(0,2\pi)$

Solution 6

since
$$b_n = \frac{2}{\pi} \int_0^{\pi} f(x) \cos x \, dx$$

 $b_5 = \frac{2}{\pi} \int_0^{2\pi} \sin 5x \cos 5x \, dx$
 $= \frac{2}{\pi} \int_0^{2\pi} \frac{\sin 10x}{2} \, dx$
 $= \frac{1}{\pi} \int_0^{2\pi} \sin 10x \, dx$
 $= \frac{1}{\pi} \left[-\cos 10x/10 \right]_0^{2\pi}$
 $= 0$

Define Fourier cosine series in [0,2*l*]

$$f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{2l}$$

where $a_0 = \frac{1}{l} \int_0^{2l} f(x) dx$
 $a_n = \frac{1}{l} \int_0^{2l} f(x) \cos(\frac{n\pi x}{2l}) dx$

State Parseval's formula

The formula that expresses \bar{y}^2 in terms of a_0 , a_n , b_n is known as parseval's formula. That is , in Fourier series in (c,c+2*l*), Then

$$\overline{y}^{2} = \frac{1}{2l} \int_{c}^{c+2l} [f(x)]^{2} dx$$
$$= \frac{a_{0}^{2}}{4} + \frac{1}{2} \sum_{n=1}^{\infty} (a_{n}^{2} + b_{n}^{2})$$

Find the sine series for f(x)=kin $(0,\pi)$

Solution 9

W.k.t the half range sine series of f(x) is in (0, l) is given by

$$f(x) = \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l} = \sum_{n=1}^{\infty} b_n \sin nx$$

To find b_n :
$$b_n = \frac{2}{l} \int_0^l f(x) \sin(\frac{n\pi x}{l}) dx = \frac{2}{\pi} \int_0^{\pi} k \sin nx dx$$
$$= \frac{2k}{\pi} \int_0^{\pi} \sin nx dx \qquad = \frac{2k}{\pi} [-\frac{\cos nx}{n}]_0^{\pi}$$
$$= -\frac{2k}{\pi} [\frac{\cos n\pi}{n} - \frac{1}{n}] \qquad = \frac{2k}{n\pi} [1 - \cos n\pi]$$

$$b_n = \begin{cases} 0 & \text{when n is even} \\ \frac{4k}{n\pi} & \text{when n is odd} \end{cases}$$

MATHS, SAEC, RMD

State Euler's formula for Fourier coefficient of a function defined in (c,c+21)

Solution 10

Fourier series in (c,c+2*l*) is given by $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos \frac{n\pi x}{l} + \sum_{n=1}^{\infty} b_n \sin \frac{n\pi x}{l}$ where

$$a_0 = \frac{1}{l} \int_c^{c+2l} f(x) dx$$
$$a_n = \frac{1}{l} \int_c^{c+2l} f(x) \cos \frac{n\pi x}{l} dx$$
$$b_n = \frac{1}{l} \int_c^{c+2l} f(x) \sin \frac{n\pi x}{l} dx$$

Find the value of b_n for x^2+1 in $-1 \le x \le 1$.

Since $f(x) = x^2+1$ is an even function. Therefore $b_n = 0$

Define Root Mean square value of a function f(x) in (0,2l)

If a function y=f(x) is defined in (0,2*l*)

V

then
$$\sqrt{\frac{1}{2l}} \int_0^{2l} y^2 dx$$
 is called the

root mean square value of
and is denoted by
$$\overline{y}$$
.
Thus $\overline{y}^2 = \frac{1}{2l} \int_0^{2l} y^2 dx$

Find the RMS Value of $f(x)=x^2$ in (-1,1)

Solution 13

RMS =
$$\sqrt{\frac{1}{2} \int_{-1}^{1} x^4} dx$$

= $\sqrt{\frac{1}{2} \left(\frac{x^5}{5}\right)_{-1}^1}$
= $\sqrt{\frac{1}{2} \left(\frac{1}{5} + \frac{1}{5}\right)} = \sqrt{\frac{1}{2} \cdot \frac{2}{5}} = \frac{1}{\sqrt{5}}$

Question 14 If f(x) = 2x in the (0,4) then find the value of a_2 in the Fourier series expansion.

Let
$$f(x)=2x$$

W.k.t $a_n = \frac{1}{l} \int_c^{c+2l} f(x) \cos \frac{n\pi x}{l} dx$
since c=0, c+2l=4, l=2
Put n=2, $a_2 = \frac{1}{2} \int_0^4 2x \cos \frac{2\pi x}{2} dx$
 $= \int_0^4 x \cos \pi x dx$
 $= \left[x \left(\frac{\sin \pi x}{\pi} \right) - \left(\frac{-\cos \pi x}{\pi^2} \right) \right]_0^4$
 $= 4(0) + \frac{1}{\pi^2} - 0 - \frac{1}{\pi^2} = 0$

If $f(x)=x^3$, $-\pi < x < \pi$, find the constant term of its Fourier series. Or

Obtain the first term of the Fourier series for the function $f(x) = x^3$, $-\pi < x < \pi$.

Solution 15

Since $f(x) = x^3$ is an odd function. Therefore $a_0 = 0$

Determine the value of b_n in the Fourier expansion of xsinx in $(-\pi, \pi)$

since xsinx is an even function in $(-\pi, \pi)$. Therefore $b_n = 0$.

Find b_n in the expansion of x^2 as a Fourier series in $(-\pi, \pi)$.

since $f(x)=x^2$ is an even function in $(-\pi, \pi)$. Therefore $b_n=0$.

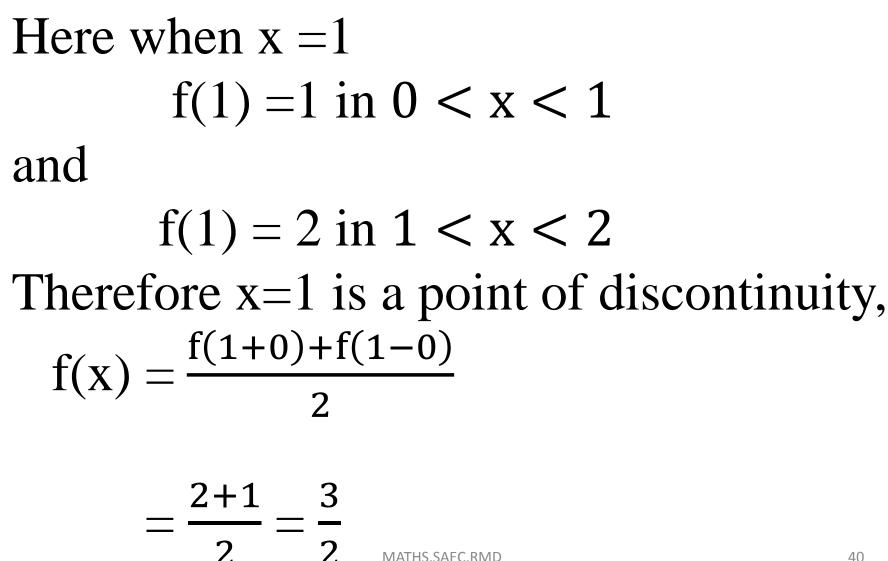
State Parseval's identity for the half range cosine expansion of f(x) in (0,l).

$$2\int_{0}^{l} f(x)^{2} dx = \frac{a_{0}^{2}}{2} + \sum_{n=1}^{\infty} a_{n}^{2}$$

Where, $a_{0} = 2\int_{0}^{l} f(x) dx$
 $a_{n} = \int_{0}^{l} f(x) cosnx dx$

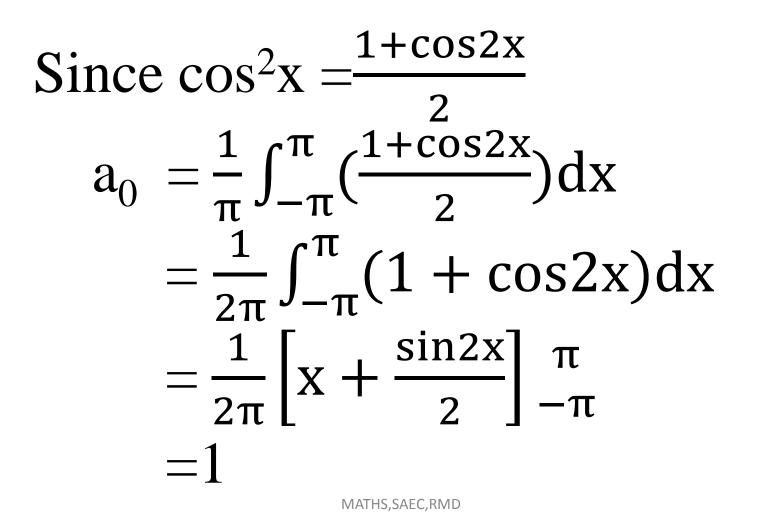
Obtain the sum of Fourier series for $f(x) = \begin{cases} x, & 0 < x < 1 \\ 2, & 1 < x < 2 \end{cases} at x=1$

Solution 19



MATHS.SAEC.RMD

Find the constant term in the expansion of $\cos^2 x$ as a Fourier series in the interval $(-\pi, \pi)$.



Write a_0 , a_n in the expansion of $x+x^3$ as Fourier series in $(-\pi, \pi)$.

since $x+x^3$ is an odd function. Therefore $a_0 = a_n = 0$.

Define periodic function?

A function f(x) is said to be a periodic function if for all x, f(x+T) = f(x) where T is a positive constant. The least value of T > 0is called the period of f(x).

Define complex form of Fourier series

The complex form of Fourier series is

$$f(x) = \sum_{n=-\infty}^{\infty} c_n e^{\frac{i n \pi x}{l}}$$

Where $c_n = \frac{1}{2l} \int_c^{c+2l} f(x) e^{\frac{-in\pi x}{l}} dx.$

Fourier series will be updated then and there.....