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Electro Magnetic Fields

TOPIC i 1:VECTOR ANALYSIS EMF

1. Introduction:

In communication systems, circuit theory is valid at both the transmitting end as well as
the receiving end but it fails to explain the flow between the transmitter and receiver.

Circuit theory deals with only two variables that is voltage and current whereas

Electromagnetic theory deals with many variables like electric field intensity, magnetic field
intensity etc.,

Mostly three space variables are involved in electromagnetitgroblems. Hence the
solution becomes complex. For solving field problems we need strong background of vector

analysis.

Maxwel | has applied vectors to Gausso0s aw
Faradayods Law. Hi s appWscapronduoédveaecsoab$ethd
Theoryo.

2. Scalar and Vector Products

a) DotProduct:i s al so call edgdsbal ahepandluetbetwtehd

A andB.

A.B=|A||B|cos

The result of dot product is a scalar. Dot product of force and distance gives work done (or)
Energy which is scalar. .
an
b) Cross product:is also called vectgroduct.

B
A x B = |A| | B| sin & <,

S=ISla  where|S|= Al [&ing %

To find the direction of S, consider a right threaded screw being rotated from A to B. i.e.
perpendicular to the plane containing the vectors A and B.

>|

\ AxB=-BxA)

3. Operator Del (D ):

Del is a vector three dimensional padiéferential operator. It is defined inCartesian
systemas

b= 0%+0 MO0 A

O
(0% oY, &

Del is a very important operator. There are 3 possible operations with del. They are gradient,
divergence and curl.

(Contdé. 2)
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4. GRADIENT:
Gradient is a basic operation of a Del operator that can operate only on a scalar function.
Consider a scalar function o6t 6. The gradient of

expressed as below.

pt ={O0 1T+ 0+ O K|t
(Gradt) 0% oY, (04
pt = Ot + 0t +0tk”
0% & &
L» Vector

Gradient of scalar function is a vector function.

Ex:- Temperature of soldering iron is scalar, but rate of change of temperadure is
Vector. In a cable, potential is scalar. The rate of change of potential is a vector (Electric field

intensity).

5. DIVERGENCE: -
Divergence is a basic operation of the Del operator which can operate only on a vector

function through a dot product.

Considering a vector function A :X% Al+ A%
The divergence of vector A mathematically and symbolically expressed as shown below.
.. . .. & ~N . . K
PA = {Q/H O A+ O k). {AX)\+ Ah+ A AJ

y z
(Div A) (0 O &

-
| (0 Oy 04
L Scala

Divergence of vector function is a scalar function.

DA = OA+ OA+ 05

Let D = flux density vector
D.ds = flux through the surface ds
The flux through the entire surfacefish.ds

Note: Divergence of D gives net outflow of flux per unit volume.

6. CURL:
Curl is a basic operation of a Del operator which can perform only on a vector function

through a cross product.

(Contd. é€3)



PxA =| O%+ O%+ O % X AT+ Af+AST
(Curl A) 0% oY, 04
= [ ] k
O O O
0% & &
Ovector | Ay Ay A;

Curl of a vector function is a vector function.

Curl deals with rotation.

If the curl of a vector field vanishes, it is called Irrotational field.
Curl is mathematically defined as circulation per unit area.

Curlv = circulation
UnitArea

CurlV = Lt <v.dl

\ & 0 o=

7. Laplacian of a Scalar function (t):-

Double operation

b./Bt) = P’t = & = Cjz_t+ @+it
O % 0y 072
Dt ={i+ G . d_Jt
O % 0y 0%
L

Laplacian operator
Laplacian of a scalar function is a scalar function.

8. Laplacian of a Vector function (K):
Let A =Aj + Aj+ Ak

PR ) (B s D)L (S s B

Laplacian of a vector function is a vector function.

9. Concept offield:

Considering a region where every point is associated with a function, then the region is said to
have a field.

If associated function is a scalar then it is a scalar field and if the associated function is a
vector function then it is a vector field.

Cort dé. 4)



10. Basic types of vector fields:

a) Solenoidal vector fieldt. A =0)

b) Irrotational vector fieldxA =0)

¢) Vector fields that are both solenoidai@otational

d) Vector fields which are neither solenoidal mootational

11. Fundamental theorem ofGradient:
der an open path from 6éad to 6bbd
of the tangential component of the gradient of a scalar function along the open path is equal to path
the effective value of the associated scalar function at the boundétlee open path.

Statement:c on s i

I f oO0tod is

b
A(DY).dl = t(b)- t(a)
a

Corollary -1:

the associated %Scal alScafanfieict t i on,
then according to the fundamental theorem of gradient

btb
Dtcog)

dIY

If itis a closed path in scalfeld, then X

b

@Amt.di=o0
a

Corollary -2: b

A line integralfi(Bt).dl is independent of the oppath.

a

12. Fundamental theorem of Divergence:(Gausgheorem)

Statement:

Vector field

Consider a closed surface in vector field. The volume integral of the divergence of the
associated vector function carried within a enclosed volume is equal to the surface integral of
the normal component of the associated vector function carried oeecksingsurface.

=
If associated vector function is A, then according to fundamental theorem of divergence,

A GBA)dv = Ay .da
\Y) S

(Contdé, 5)
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ST
Note: Area vector is always outward normal

13. Fundamental theorem of Curl:- (Stokegheorem)

Statement: Considering an open surface placed in a vector field, the surface integral of the normal
component of the curl of the associated vector function carried over the open surface is equal to the
line integral of the tangential component of the associatednv/rtotion along the boundary of the

open surface.

Vector field

—_
If associated vector function is A, then

~ - - . =
?

"(bxA)da= T A .dl

Corollary-1:  Ifitis a closedsurface

A(BxA).da=0

Since there is no boundary and hence

Corollary-2: &A . dl is constant for a fixed boundary.TherefofedP X A ).a)a is independent
of the type of open surface.

14. Vector Identities:
a)bxbf =0

b)D.DXA=0
O)D.fA=Df . A%f (D.A
d)E)fo_)szxAT)H(DxATf
e)DXDXA=D D .A -D’°A

f) D.Df =P?f
Q)D(fF)=f(®B.F)+Fbf

h) Div (u x v) =v curl ui u curlv
0) A BxC=B.CxA=C.AxB
) D.AxB=B.DxAiA.DxB

—

K)D’A=D (D.A)-Dx (B x Ay

15. Co-ordinate systems:

a) Cartesian cardinate systenx,y,z)
b) Spherical ceordinate syster(r,q,f)
¢) Cylindrical coordinatesystem(r,f,z) (Contde. 6)
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15.a) Cartesian co-ordinate system : (X,y,z) 7
dz/}r
\\\:::\\pz(x+dx,y+dy,z+dz
P1(X,y;%) |
z P
y idy Y
X v
LA
dx ’
X !
Differential length, N R R
dl = dx i+ dy | + dzK
15.b) Spherical ccordinate system:- (r,g,f )
X

Cartesianto spherical Spherical to Cartesian
X = rSing Cosf r=0x*+y +7°
Y =rSing Sinf q=Cos'[ z )
Z =rcog) bx2+§2+22J

f = Tan'( y/x)

N

Note: In Spherical system unit vectors are, f,
Differential Length Vector:

&

O varying -
L
v r varying




r varyingdirection
f varyingdirection

g varying direction

Differential length,

dr'= (drf + (ray)q + (r sirg df) £

15.c) Cylindrical co-ordinate system:(r, f, z)

Cartesianto Cylindrical

Cylindrical to Cartesian
r=0x2+y X = r co$

f = tan® (y/x) y = rsinf
z =1z

Z=Z



8
Note: In cylindrical system unit vectors ard f,:zA

Z varying

.

- ¢ varying

s

*

Differential Length Vector:

Differential lengthidl = (dn)T + (rd ) f + (d2) Z

16. Differential areas: ( da (or) d9
a) Cartesiansystem:

dl = dxi + dyj + dZ'k

T = dx dy |

b) Spherical system:

dal' = (dr)Y + (ray) g + ( r simgdf) f

da= (F sinq dq df) 7

¢) Cylindrical system:

=@t +@d)f+@z)z”

da = (rd dz)r




17. Differential volumes: (dv)

a) Cartesiansystem:

dr=dx 7+ dyj*dz K"

dv = dx dy dz

b) Spherical system:

dr=(d)®+ (rdy) + (r simg df) £

dv = P sing dr dq df

c) Cylindrical system:

dl = (dr) + (rd) £ + (d2) 2

dv=rdrd dz

18. Dot Product between Spherical & Cartesian system uniectors.

Cartesial,
i j

=~ >

Spherical

r sing cod  sing sinf coyy
g | cogcod cogsinf  -sing

? - sinf cod 0

19. Dot Product between Cylindrical & Cartesian system unitvectors.

Cartesian N N
[ ] k
Cylindrical
T cod sinf 0
f - sinf cod O

N>
o
o
P

20. General Curvilinear Co-ordinate System

Let h, hh & hs be scaldactors
U, u2 & Us be ceordinate system

31, e/z\ & e/g\ be unitvectors
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Cartesiansysten Spherical system Cylindrical system
hhp hs] 1, hhp hs] 1, rq, hhp hs] 1, r
A AN A A AA AN A AN A A AN AAANA_ANANA
e & e i, j K eLe 6] qIf, e ee] fz
Ug,UzUs] X, uguzusj q,f up,uzusj frz,
In General:
1 _0te 1 Oteé 1 Otel)pt”
= hy Oy + h, Ou + hy Oy
- 1 O ( Aihzhg) Q ( Ashshy) Q( Ash;hy)
Z)DA: h1h2h3 Ouy + Ou + Oy
—>
3) DxA 1 ~ ~
hihyhg hlé\l hoe, hses
e O ]
Oy Ou Oy
Alhl A2h2 A3h3

vo-wi (S0 (20} oo (80} e { () ]

N N\
Let: A = Al/i\+A2 j + Ask — Cartesiansystem
N\ Ve N
=Aje+tAzeq+ Age —> Sphericalsystem

=A;e +tA,e + Ase, ——> Cylindrical
In Cartesian system:

1)bt= 0% 040tk 7
Ox Oy 0Oz
2)D.AR=0A+0hA+ 0A
Ox Oy 0Oz
N\ PaS N\
) bxA =i j k
o O O
O x Oy 0Oz
A Ay As

4Pt & Okt Oft O
6% 0% o7

In Spherical system:

A

"/\
+1p_tq+1 ot f

r rsing &
1 [_O (Air’sing) _+ Qrsing) +AO_(A3r]
: 3 ”

& &

3)PxA=r’sing | T rq rsing f
O O _0
Or & o]

Al 1A, rsing As




4) Pt = _ 1 Keo) {rzsinq[étj}+é {rsinq[ C")t]}+0 {r [OtJ}
r? sinq Or Or. Oy r Gy G rsingl &

In Cylindrical system:

nbpt=0r+31 6+ 06tz "

2)p. R = ;[g(Alr) + 0 A+ 0 (A
r| Or o

Or

3)DXA =_1
r
4 PPt=_1
;
1)

2)

3)

4)

5)

6)

7)

8)

9)

If the vectors Aand B are conservativthen __
—_
a) AxB

r & Oz

6
Ve Ay VA
r rf z
0O O @)
or « Oz
A TA Ag

is solenoidal

|
Oz

OBJECTIVES

One Mark Questions

—

o @te faented et

( Engg.Services,1993)

b) A x B is conservative

c) A+Bissolenoidal

d) AT Bissolenoidal

The value ofid.l along a circular radius ofuhitsis

a) zero

b) 20

c) 40

d) 8

which of the following relationss correct?
a)D x (AB) = DAxBi A.DB
c)b (AB) =A.PB +B.bA

b . (b x A) isequalto

(IES, 93)

(BEL, 95)

b)D . (AB) =DA.B + A .DB

d) all thethree

(BEL, 95)

a)0

b) 1

c)a

d) none of these

Given points A(2,31) and B(4;50°,2) find the distance from A to B

a) 3.74

b) 4.47

c) 16.7

d) 6.79

Find the nature of the given vector field defined by A £ 3@y [+ 5xZ k
a) Neither Solinoidahorirrotational
¢) Only Solinoidal

b) Solinoidal &irrotational

d) Onlyirrotational

Find the nature of given vector field defined Dy A £yz i ¥ zx j kxy
a) Neither Solinoidahorirrotational
¢) Only Solinoidal

A vector field is given by A = 3xy4iy?j "Finda A~ . d |
the xy plane from (0,0) t¢1,2)

a)-9/2

b) 7/6

c)-7/6

b) Solinoidal &irrotational

d) Onlyirrotational

d) 2/3

thehcerve ey = 8% 6

Find the laplacian of the scalar function v = (oas(cylindrical system).

a)5

b) 0

c)7/6

d)8

S
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Two mark Questions

10) FindD (1/r),wherér=xi+yj ¥k

a T b) 0 c) T d) A1
r r?

11)Find the line integral of the vector function A = X'i 4yj + y’ k aroufd a square contour
ABCD in the xy plane ashown.

a)0 b) 10 c)-1 d)8

12)For the vector function A = Qi £ yZ2j + 2 xz k, cAlculatdi A . dl Where ¢ is the
straight line joining points (0,0,0) {4,2,3)
a)p b) 8p c)16 d) 13
13) A Circle of radius 2 units is centered at the origin and lies on thelxie f
A= 3y?T+ 47 + 6y X, find the line integrdd A —di-Where C is the citanference of the circle.

a)p b) 8o c)0 d) p/3
14)Represent point P (0,1,1)m g'ﬂvin Cartesian C{o)rdigate system, in sphg_Ei co-ordinates .
15)Find i J{Px A).da where A = § + x ] for the hemisphericalurface

X+ +Z=b; 220 z
a)-2 p b?
b) 2p A
> Y
c) -2pb
d) 2 pb?
X

Key: 1)a 2)a 3)d 4)a 5d 6)a 7)b 8c 9b 10c 11)d
12)c 13)b 14)b 15)a
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TOPIC T 2 ELECTRIC FIELD INTENSITY . EME ___.
Electrostatics is a science that deals with the charges at rest. Static charges produce electric
field.
In electromagnetic theory there is a fundamental problem with regard to the force between the
el ectric charges. Let wus start our study with an
Coul ombods Law:
Ql QZ
- > < =
I:12 d B F21

This law states that considering two point charges separated by a distance, the force of
attraction (or) repulsion is directly proportional to the product of the magnitudes and inversely
proportional to the square of the distance between them.

Fa|Qil Qi

o

F=[ 1J 1 IQ

L4p i o
— /\
Force acting on Q1 due to Q2,F % BA
4p |0d
Qll Ay

Force acting on Q2 due to Q%L1 E 4p To?

This law is an imperial law and difficult to understand how exactly a force is communicated
bet ween t hem. Mi chel Faraday gives a satisfactor
concept of electric field.

According to Faraday, Q1 experiences a force because it is placed in the electric field of Q2.
And Q2 experiences a force because it is placed in the electric field of Q1.

Concept Of Electric Field:

An electric field is said to exist at a patlar point, if a test charge placed at that point
experiences a force.

—
Il f 696 is the test charge and F is the force
unit test charge is known as Electric field intensity. Expressed in NYhor

—

E = F| NIC(onVM
q

ELECTRIC FIELD DUE TO A POINT CHARGE:

Z
P
r
/.qc
// Y
+Qc
X
Consider a point charge of 06+Q06 ¢ at origin. I n
observation P, consider a Unit test Charge 0906 ¢

(Contd €13)
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Therefore, the force experienced by the test charge is

— g A
- ap for?
We know, E = L
q
— A
\ = LZ r
4ap lor

NOTE: Thus electric field intensity is independent of the amount of test charge.
In Cartesian system:

. Q T
F= 4p lor? |1

— Q o+ )+ 7K
E = 40 10yt D)

ELECTRIC FIELD DUE TO A POINT CHARGE LOCATED AT ANY GENERAL
POSITION:

+QC \ g Q A/\E’
Sel > = - A
A A 4p Io(APY’

- Q A
* \E= —————

A P ap ioPAR A

Electric field is always directed away from the point charge towards the point of
observation(P), if it is a positive charge.

Similarly, electric field is directed away from the point of observation towards the point
charge, if it is a negative charge.

PRINCIPLE OF SUPERPOSITION:
The principle of superposition says that electric field due to any charge is unaffected by the
presence of other charges.

In a system of discrete charges the net electric field is obtained by the vectorically adding up
the indivdual electric fields.

B,
ﬁ

Es

—_— —> —

—_
Net electric field intensity E =E- E; + Es+ € é .

(Contc



Electric field due to continuous charges distribution:

Continuous charge distribution is categorized into 3 types.

a) Line charge distribution:

I f the charge is continuously digrichbmtedtal ar

called line charge distribution.

b) Surface ChargeDistribution:

| f the charge is continuously distmi bd/tmd

it is called surface charghstribution.

c¢) Volume ChargeDistribution:

| f the charge is continuously distryinbuted

c/m’, it is called volume charggistribution.

Electric field due to an infinite line charge: 7 r. c/m
dz © A
ra=Cr’+7°

Consider an infinite line charge with a line charge denmsitym placed along theaixs. Let the
point of obse-yplamd.i on 6PO6 be on x
Net electric field at P,| =_  — L »
2p o

Electric field due to infinite Line charge located atany general position.

rocl
re A N A Lom
) Eap= 2 ;NP NP, if itis a +ve line charge.
i) Ep= o N PN, ifitis a-ve line charge. P
Electric field due to a finite Line charge(2L) along the perpendicular bisector.
Z roc/m
%\Z Nl
L la =(~)2+Z2
re A Y
- L 4
E= 2plor 2+7

(Contc
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Electric field due to a finite line charge located at any general position.

) Eups —L— BN A .
2p NP &BNZ+nP? NP if itis a +ve line chargeA
) B L B A

2p NP GBNZ +NP? PN, ifitis a-ve line charge.

Electric field due to a finite line charge

(OA, OB)
A

N = e (comai cod)
) Bn = 4p od dq

g it sinb T sina 0
) Ev=" 4p i ( ) I
e R 0
i) Net electric field intensity, E €E°y +E%y

v) I f 6006 i s bt(iBea).mslice p o nBt

tends to infinitya O,b p E,=0 "y b
— rL, é\p
E= 2p |od

Electric field due to Rectangular line charge along it axis.

=S
ag 9%

Q.
>

3

o)

\
;

R

X

?at P=EB + ?CD + zc + gA

= 2 [Bae + Eac]

E= r,d (a + b
p @Oaz +b2+d2 u)z_l_dz a2+d2

APN
K

(Contc



Corollary:1 Ifitis a square line charge=b

E=2 Lda N
p e+ . (+d?) 'K

Corollary:2 If d=0 i.e. the electric field airgin

>
E=0

Electric field due to a circular line charge along its axis:

“ i/

Consider two diametrically opposite elementary displacements located at A & B. Let point of
observation O6P6 be along 06Z06 axi s.

>
Eatp= L az é\

2eoza2 + Z2)3/2

Electric field due to an infinite charge sheet:

Consider two diametrically opposite elementary surface charges located Bt Ref point
of observation 6P6 be along Z axi s.

> Is N
E = 2e

The electric field due to the surface charge sheet is independent of the distance of the point of

observation (P) from the surface charge sheet. It has a constant magnitude regpal 4od has a
direction normal to the surface charge sheet.

The field direction is away from the surface charge sheet towards the point of observation if it
is a +ve charge sheet.

(Contc



Electric field due to a circular disc along its axis:

X

Consider two diametrically opposite elemental surface charges located at A & B. Let point of
observation éakRi®@ be along the z

Eap=rs(liz/C&+D)z"

2ep

Ga u slavd: s Z

gne=

Let us consider a point charge of 6+Q6C at ori

X

The electric field at any point over the closed surface
E=@Q/46)."
Differential area, da Z®inqdqdf 7

p 2p
@E.da = Q. #isingdq fidf
s 40 ¢ 0 0
OE . da = (Q&)
S

Though the above result is deduced with respect to a spherical closed surface enclosed a point
charge, it is a general result applicable for any closed surface enclosing any charge in any form.

BE.da = (1) 3 Qenciosed= (L) fir y dv
Vv

S
LGauss l aw in integequatof orm (or) Max\
Using divergence theorem,
A® . E) dv = (1&) fir, dv
% v

\ p.E= v/ en) point form of Gaustaw

(Contc



substitute D =E

@% . aa = Qndosed: ﬁrv dZ
S \Y

(or)

-4
b.D=ry —— Ma x we F'Egdation 1

Statement:-
Surface integral of normal component of electric field Vector is equaldg) (hes charge
enclosed.
(or)
Surface integral of normal component of electric flux density vector is equal to the charge
enclosed.

Gaussian Surface:
Gaussb6s | aw is ery
I maginary surface al |

usef ul to find out el ectri
ed NnGaussian Surfacebo

The electric field must be uniform at every point on this surface. It must be normal to the
surface considered.

OBJECTIVES

One mark Questions

1) Inside a hollowconductingsphere (Gatei 96)
a) electric field iszero
b) electric field is a notzero constant
c) Electric field changes with the magnitude of the charge given twotigtuctor.
d) Electric field changes with distance from the center obpitere

2) A metal sphere with 1m radius and a surface charge densitycaiiis (Gatel 96)
enclosed in a curve dOm side. The total outward electric displacement normal to the surface of
the cubas

a) 40p coulombs b) 1Qpcoulombs ¢) 5 coulombs d) none
3) If V,W,Q stands for Voltage, energy and charge, then V caxpeessed as (Gatei 96)
a) v=d b) V=dw c) dv=dw d) dv=d
) dg ) i ) & ) aq
4) In the infinite plane, y=6m, there exists a uniform surface cliegsityof (Gatei 95)
(1/60) mc/m?. The associated electric field strenigth
A A A N
a)30i V/m b) 30 j V/Im c¢) 30 kv/im d) 60 J v/m

5) The electric field strength at a distance point, P due to a point charge, +q, located at the origin, is
100nVv/m. If the point charge is now enclosed by a perfect conducting metal sheet sphere whose
center is at the origin, then the electric field strength at the point , P outside the sphere bcomes
a) zero b) 200mV/m ¢)1100nV/m d) 50mV/m

6) Copper behavessa (Gatei 95)
a) Conductor always
b) Conductor or dielectric depends on the applied electric diedohgth
c) Conductor or dielectric depends on the frequency
d) Conductor or dielectric depends on the electric cudensity.

(Contc



7) Given the potential function in free space to be v(x) Z5®0y + 507 volts, the  (Gatei 01)
magnitude (in v/m) and the direction of electric field at point111), where the dimensions are
in metersare

a) 100;(i+j+k) b) 1008;  (i-j+k)
c) 10008;[(-i +j-k)/C8] d) 10008; [(-i 1 T k)/CB]
8) In a uniform electric field, field lineandequipotentials (Gate 94)
a) are parallel toneanother b) intersect a5
c) intersect at 30 d) areorthogonal
9) When a charge is given goconductor (Gatei 94)

a) It distributes uniforming all ovahesurface b) It distributes uniformly all over theolume
b) It distributes on the surface, inversely proportional to the radiosraéture
c) It stays where it waglaced.

10) The mks unit of electric fiel& is (IETE)
a) Volt b) volt/second c) volt/metre d) ampere/metre

11) Unit of displacement density
a)c/m b) c/m? c) Newton d) Maxwell 6s equati

12)Two infinite parallel metal plates are charged with equal surface charge density of the same
polarity. The electric field in the gap b/w the plates
a) The same as that produceddne plate  b) Double of the field produced by one plate
b) Dependent on coordites of the field point djero

13)Three concentric spherical shells of Radii R1, R2,R3(R1<R2<R3) carry clidrggand 4
coulombs, respectively. The charge in coulombs on the inner and outersurfaces respectively, of

the outermosshellis. (IEST 95)
a) 0 and4 b) 3and1 c)i3and7 d)712 and6
14)A positive charge of 06Q6 coulombs is | ocated at

magnitude Q coulomb is located at point B (8), The electric field intensity at point c(4,0,0) is
in the

a) negativeX-direction b) negativeZ-direction

c) positive X-direction d) positive Z-direction

15) The force between two point charges of 1nc each with a 1mm separaioisin  (IES- 01)
a) 9 x103N b) 9x 10°N c) 9x 10°N d)9 x10™N

16)Two charges of equal magnitudes are separated by some distance. If the charges are increased by
10%; to get the same force b/w them, their separation lmeust
a) increasedy21% b) increased b$0%
c) decreaseby 10% d) non of the above orrect

Two mark Questions

Common data for Q. No. 17, 18 & 19

A small isolated conducting sphere of radiussrcharged with +Qc. Surrounding this sphere
and concentric with it is a conduction spherical cell, which posses no net charge. The inner radius of
the skell is r2, and outer radius r3. All naaonducting space is air.

17) The electric field distribution from 0 to r1 wible
a)zero b) same c)increases d)decreases
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18) The electric field from rl to r2 wilbe
a) zero b) same c)decreases d) increases

19) The electric field from r2 to r3 wilbe
a) same b) zero c) decreasing d) increasing

Common data for Q. No. 20 & 21

Infinite surface charge sheets are placed along thri&¥'with surface charge densitys+
c/m? and-r s c/m? respectively.

20) The electric field intensity between the sheets béll

a) zero b)rsj C)ls ] d)rs]
2€p & &
21) The electric field intensity outside the shewill be
a) zero b)rs | C)rs -] d)rs]
26y € €

Common data for Q. No. 22 & 23

Y
22) An i nfinite number of charges, each equal to 060Q
these charges will be
a)Q b)2Q /3 c) 4Q/3 d) 4Q/5

23) The electric field at x = 0, when the alternate charges are of opposite in nature, will be
a) 4Q/3 b) 4Q/5 c) 1.5Q d) 3Q

Common data for Linked answer

The spherical surfaces r = 1, 238carry surface charge densities of 20 rfc/®nc/nf and 2nc/rh
respectively.

24) How much electric flux leaves the surface at rz=5

a) p3 10° b) 8p c) 3p3 10° d) 83 10°
25) Find electric flux density at P(11, 2)

a) 8.83% 10°f b) 3.3% 101°f c) 3.82 10°f d) 40° 10°7
Key:

l.a 2.a 3.b 4.c¢c b5.c¢c 6.a 7.c 8d 9.a 10.c 11.b 12.d 13.b
14.b 15.a 16.b 17.a 18.c 19.b 20.d 21.a 22.c 23.b 24.d 25.b
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TOPIC i 3: ELECTRIC POTENTIAL, WORK & ENERGY EMF

Electric Potential:

Z
b
r(b
Y
+Qc Y
r@a)
X
a
Consider +Q of charge at origin.
Let the point of observation is at a distance O0r ¢

We know, S
Eap=(Q /% ) .1

. > A . A
Displacement vectorld& (dr)t + (rdy) q + (rsingdf ) f

b
' RE. d'= (Q /4 &[L/r(@)i 1/r(b)]

a

The integra?E .9Idis independent of the open path and depends only on the starting and
ending point. Now let the starting point be replaced by a reference gpand the ending point be
replaced by the point otservation (p).

P

> >
The quantiiE.dat t ached wi th a O6negatived sign is kn
q
point of observation p.
p
\ V(p) =- fiE . d
q
Note:For finite charge distribution, o6infinitydé is
charge distributionodo other than infinity can be &

Potential difference between two points:

Ay > Ba >
V(A)i V(B)=1 AE.d =AE". d
B A
Relation between electric potential and Electric field (V & E):
We knowthat, B
VA) i VEB)= AE.d - (1)
A
The fundamental theorem of gradient,
B
V(B) i V(A) = A®V) . di
A
B =
V(A) i V(B) = -A(dBV).d --- 2
A

(Contc



Compare (1) & (2)

9

E=-bV

hTaking O6cgsided 6 on both
D3 E=D3 (-bV)

\ D3 E=0 — Max we ["Eduation3
i)Taking 6divergenced on both sides
D .E=b.(-bV)
=PV, 0
9
\' |P.E, O
\ Therefore, an electrostatic field is irrotational (or)
conservative butot solenoidal. Z
p
Electric potential due to a point charge (Absolute potential):
We know, P r
> >
V(p) =-fE.d
q
Due to finite charge, replace reference pqiatith infinity +Qc
().
r X

V(p) =-f(Q/4p g) . dr

Vo lvim=Qip e

Electric potential due to a discrete charges:

V() =V(Q) +V(Q)+V(Q) + ¢éé Q2x 2 p
=Q/p g1+Q/p g+ €¢€.

Electric Potential due to a continuous charge distribution:

V(p) =ad(r_d)/4p ¢ for line charge distribution
=@ @Msda)/ 4p & for surface charge distribution
S
=f(rydv)/4p g for volume chargelistribution
v
Electric potential due to an infinite line charge distribution:  Z /
roc/m
Consider an infinite line charge placed along thieaxis. <« Ip —>& .b
€« fp—>
\ Electricpotential difference, 0
Vlv=(i/2p @ In () /
X :
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Electric potential due to a charged ring:

\ roc/m

V =(r.a)/ (Zxr)

where r=Cf +h

Potential due to a charged disc:

Electric potential at p, h '
rsc/m?—p h i p

\ V= (rs/ 2e)[G + 1P h]

I) Potential at the centre of the disc,
substitute h =0

V' olv=(ral )

Poi ssonds equation and Laplacebds equation:
From the differential form of Gauss law,

bD.E=r/g --- (1)
But, N
E=BV  — (2
Substitute,
P.(-BV)=r /&
\ PV =1 /g Y Poi ssonds equation

For a charge free region i.e.=0

Y Lapl aceds equation

P/ =0

Both these equations are effectively used to determine the potential and electric field
distribution without knowledge of source charge distribution.

Solution to Lapl aced6s$Ordigpteati on in Cartesian
Laplace equatiorD?V = 0
Y (V) + BV [ wy?) + 12V [ iz%) = 0
Caselo6 VO is a faxotion of only

\ V=AXx+B

Case26 VO is a fawnwetion of only
\ —
V=Ay+B
Case30VO is a famaetion of only

\ V=Az+B
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Solution of Laplace equation in spherical cé ordinates:

PV =0
Y 17Sing [ wr(r’sing uV/pr) + Wi 68ing pv/p Y1+ W f(1/Sing) pv/p §] = 0

Casel6V6 is a function of o6rdéd only

\ V=-A/r+B
Case20 VO i s aqgonmyncti on of O

\ V =Alntan@/2) + B
Case36 VO i s afBomyncti on of O

\ V=Af +B

Solution of Laplace equation in Cylindrical Coi ordinates:
P*V=0

Y Ur[Lpr(r pV/pr) + W €1 . pvip § + wuz(r uV/pz)] = 0

Casel6 V6 is a function of o6rdéd only

\ V=Alnr+B

Case26 VO i s a fGonmyncti on of 0O

\ V=Af +B

Case36V6 is a fomyncti on of 06z56

\ V=Az+B

Note: Here A and B are arbitrary constants, whose values are determined by using appropriate
boundary conditions.

Work Done: %a i Tt

A charge 6q6 kept in the electric field experi
the force experi ejsdhe tbrcebagplied im eppasite direaian. [fdhg magnitéde
of Fyis equal to F, the charge remains in equilibrium glisFslightly greater than F, the charge can
be moved from point a to point b. The &malsl wor k
F..dl. Total work done in moving the charge from a tah be obtained.
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Work done :ﬁﬁa. d Where9|g1 =-F
b b

> > - > -> >
=fF,.d = -gAE.d [ F=Eq]
a a
\ b9$
Work done =g fiE". d
a
Energy:l f point &éad is repbaeerd pygi hhedbéfesenepl poe

observation (p), then

Y
W:-qﬁg. (T:qV(p)

o)

P
Where V(p) :ﬁﬁ . 3

q
The above expression represents the energy because this amount of work done is stored in the

form of electrostatic energy.

Energy stored in a system of o6ndé point charges:
Consider a system having 6nd number of point ¢
Energy stored in this systemi& (ViQ1 + Vo.Q. + é € @) V
In compact form

n
W =1/2a QV;
i=1
OBJECTIVES
One Mark Questions
1.A spherical conductor of radius 6ad with, char ge

and unearthed spherical conducting shell of inner and outer radiil ip respectively. Taking

potential to be zero at infinity, the potential any pointwitit the shell (r< r < r) will be

a)q/dp ¢ ( GATE®95)
b)a/ 4p e q

c)q/4p g

d) a/4p e

2. Which of the following equation(s) is/acerrect?
a)J =sE b)PV =E c)D=IE d) all the above

3. A point charge of +1nc is placed in a space with a permittivity of 8:B5* F/m as shown. The
potentialdifferenceVpq betweertwo pointsP andQ at distanceof 40mmand20mmrespectively

from the pointcharge is Q ( GATEG603)
a) 0.22KV 20m

b)i 225V @% P

C)i 2.24KV »

d)15Vv inc 40mm

(Contc



4. One voltequals ( BEL «

a)one Joule b) One Joule / Coulomb c¢) One Coulomb /Joule d) None
5. Equationb?V = -r /i is calledthe (I1T)
a)P o i s equatidns b) Laplacesquation c) Continuity equation d) None

6. Two point charges Q and are located on two opposite corners of a square as shown. If the
potential at the corner A is taken as 1V, then the potential at B, the centre of the squmee will

a) zero Q- A (1 ES693)
b) 162 Vv
C) 1V ::<:,B
dvVv
~-Q

7. The potential inside a charged hollow sphiere
a) zero b) same as that dhesurface c) less than that dhesurface d) none

8Two spher gbs agd adareli s odmect ed by a conducting wirtr
given a charge Q. Now,
a) largersphere will havgreatempotential b) larger sphere will have smallgotential
c) both the spheres will hagamepotential d) smaller sphere will have zero potential

9. Potential of a sphere is givas
2) Q/ 4p & b) Q/p & c) Q/4p &’ d) &/ 4p ¢’

10. A sphere of radii 1m can attain a maximum poteiotial
a) 33 10°Vv b) 30KV c¢) 1000V d) 3KV

11.Joule / Coulomb is the uriff
a) electricfield intensity b) potential c) charge d) None

Two Mark Questions

12 2 - Q +Q

An infinite number of concentric rings carry a charge Q each alternately positive and

negative. Their radii are 1,2,4,8,é. metres in (gc¢
centre of the ringwill be (I ES692)
a) zero b) Q/12p ¢ c)Q/8p g d)Q/6p e

13.Find the work involved in moving a charge of 1C from (@,8) to (3,4;5) along a straight line
the field E =xi + yj - zk.
a) 24.5Joules b) 25.5 Joules c) 19 Joules d) zero

14. Fin(ésth%work done in moving a point chargec3from (2p, 0) to (4,p,0) in the field E = 107
+10° z2.
a) 0.207Joules b) 1.27 Joules ¢) 0.8 Joules d) zero

15.Five equal point charges of zone are located x = 2,3,4,5 and 6 m. Find the potential at the origin.
a) 180V b) 183V c) 210V d) 261V
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16.A line charge of 18/2 c/m lies on the Z axis. Findg,i f 6a6 is at (2,0,0) and

a)2V b) 4.24V C) 6.24V d) 8.24v

17.A point charge of 0.4 nc is located at (2,3,3) in Cartesian system.fFihAis (2,2,3) and B is
(-2,3,3).
a)2.7V b) 3.6V c)4.7V d) 8.1V

18. Determine the potential at (0,0,5) m caused by a total chafigedi§tributed uniformly along
a disc of radius 5m lying in the Z = 0 plane and centered aritjia.
a)12.2 b) 17V c)14.8V d) 13.2v

19.3 point charges of 1C, 2C and 3C are located at the corner of an equilateral triangle of 1m side
each. Find the energy stored in gystem.

a)9/4p lpJoules b) 4p ip/3Joules c) 11 /4p ipJoules d) 303 10° Joules

20.1f the potential is givenbyV=8wher e 6ér 6 is distance from origin
with in a sphere of 1m radius centered atdhgin.
a)90io b)l 30i0 C)30|'0 d)|30/|'0

Common data question

A spherical shell of r aduniosnlydisributed ovarttsasurface. a t ot al
21.Find the potential inside the spherishkll
a) Q*/4p b) Q / 4p°eva c)Q/4p & d) zero

22.Find the potential outside the spherishéll
a) Q?/4p b) Q/4p & c) zero d)Q/4p &

Linked Question

Two parall el infinite conducti ngiapdhave@mterdiad par at e c
Vo and zero respectively as shown.

: .
x=0 < =d

«<—— d—

23.Find the expression for voltagkstribution

a) V = V(1 +d/x) b) V = Vo(171 x/d) C) V = Vo(171 d/x) d)o
24.Find the electric fieldntensity A A A

a) (Volx)/i\ b) Vo' c) (Vo/d).i d) (x/Vp) .i
Key:

la 2d 3b 4b 5a 6¢ 7b 8c 9a 10a 11b 12d 13.b

14.a 15d 16.c 17.a 18.c 19c 20.b 21.c 22d 23b 24.c
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TOPIC i 4: DIELECTRICS EMF

Polar and Noni Polar Dielectrics:

Dielectric is nothing but an insulator. It is capable of storing energy for a short duration.
Dielectrics are classified as polar and iigvolar type.
Electric Dipole: Two equal and opposite charges separated by a small distance is called a dipole.

Dipole Moment: Dipole moment is a product of charge and distance between charges.

+qg

Dipole moment| p = g3 js
.

» E Applied

® © © O
® © © O

Fig(1) fig(2)
PolarDielectric without Polar Dielectric with
appliedelectric field applied Electridield

Polar Dielectrics: The charges in the molecules of polar type have permanent displacement from
each other. The molecules have permanent dipole moment. They are randomly oriented as shown in
fig(1). Net dipole moment zero until an electric field is applied.

When an electriciéld is applied, the dipoles orient in a particular direction such that the
induced electric field is in a direction opposite to the applied electric field. This can be seen in fig(2).

Non 1 Polar Dielectrics: In noni polar dielectrics, the centres of positive and negative charges
coincide each other. When nanpolar dielectric is kept in the electric field, a small displacement
takes place between the charges.

Potential due to a dipole:Let us casider a physical dipole located oni Zaxis and the point of

observation P(m, f). Z
P(al)
e
T taLg
S A Ip
L oq
It is required to determine the potential at 6épé
dipole. It is easy to handle this problem using sphericalaalinates.
Potential at oO0p6 is the sum of apgest enti al val uce
Therefore, the potential at oO0p6 due to the phy
V(p) =Vi+V;

=q/ (4 &2+ (-q)/ (4p &)
\ V(p) =q/ (4 8[L/ra- 1/n]

\ V(p) = a/(4p §l(roT ra) / rare]
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Case:When the point of observation is at a very large distane®d =qand g=r,=r
N ra=BC

\ V(p)=q/ (% 8 [BC /1] >/r/
=q/ (4% ¢ [Scosi/r] [Q BC=Scog]] x tAAL r
2 > S e L
V(p) = (p cos) / (4p &) [Qp=qS] v b
_q B C
V(p) a 1/r?
Electric field intensity due to a Dipole:
=
We know E=-bV
- _ 3 A . A
\ E=p/ (4 er)[2cogr+simq] in sphericabystem
\ >
E° 1/

Observations:
i) Potential due to an electric dipole V(p)L /r?
ii) Electric field intensity due to an electric dipolé E1/r°

Polarization (I%)

Some materials already contain the internal electric dipoles. When such materials are
subjected to an electric field these internal electric dipoles align themselves along the direction of
applied electric field.

Many materials do not contain any interregectric dipoles. When such materials are
subjected to an electric field, internal electric dipoles are generated and align themselves along the
direction of applied electrifield.

Qualitatively defined as production and / or alignment of internal ededipoles.

Quantitatively defined as effective dipole moment per unit volume.

> >
\ P=p/dv

units for polarization is coulomb /3n

Susceptibility(c):
Susceptibility is one less than relative permittivity.

c=gi1l
Displacement density is directly proportional to electric field intensity.
D" E
D=e&E - (1)

When a dielectric is kept in the electric field, a net dipole moment exist since the dipoles align
in one particular direction in the case of polar dielectrics. Polarization density (p) is directly
proportional to the applied electric field.

P=ceE - (2
From (1) & (2)
P=ce
D eeE
=cle
=&l l)/e [ c=ell]
\ P=[e&71)/e].D
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Gaussb6s Law for Dielectrics:
We know that differential form of Gauss law in free space.

b % =ril & Wherer; free volume charge density.

Consider a row of dipoles as shown.

The positive charge is nullified by the negative charge near by (or) the head and tail gets
cancelled throughout except at the beginning and end. In other words, a negative charge and a

positive charge can be seen Batuntdh e hbaao wredsar.i es .

Gaussods |l aw is modified as foll ows.

—
E).E:(rf+rb)/eo

Wherer, bounded volume charge density

Statement: Surface integral of normal component of electric field is equalitgtithes the sum of
free charge and bound charge.

> >
‘ﬁslﬁ-dazlﬁ‘b(QﬁQo)

Point form of Gba_ussés l aw i s,
BD.D=ri+T7yg

Dielectric Boundary Conditions:

When flux lines flow through a single medium, they are continuous. When they flow through
a boundary formed by two different types of dielectrics, they get refracted. This can be studied by
using boundary conditions. Surface of glass board is glass aid&au Surface of porcelain
insulator is a porcelain air boundary.

Boundary condition for Electric flux density vector (f)):
' Dn2
Pill Boxy, 1 da
_ D,
(2) e , Ah  ,-charged sheet

1) eﬂ/aﬁ ; l with densityr ¢ c/m’
D, R

Consider a boundary formed by two dielectrics as shown in the figure. An infinite charged
sheet with charge density c/n'’ is placed at the boundary. The dielectric constants of the media 1

and 2 ard r, andi r, respectivelyg; is the angle of incidence is the angle of emergences2nd
Dy, are the normal components of flux densigtors.

T

Consider a pil!l box at the boundary such that

the pill box under limiting contgtioﬁ\h 0.

A . da=Qenclesed
S

Do flal Dpifla =r¢3 A
Dn2A | Dn]_A =r sf A
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\ D21 Dni=r s

Statement:Normal component of flux density vector is discontinuous by an amount equal to the
charge density of the sheet.

If charged sheet is not present at the boundayy, O.

\ Dn1= Dn2

Statement:Normal components of flux density vectors are equal. They are continuous at the
boundary provided there is no charged sheet at the boundary.

9
Boundary condition for Electric field intensity vector(E):

Second boundary condition deals with tangential A B B
component of electric field.;Eand E are the electric N Etz%
field intensities in the media 1 and 2 respectively. (2) er, :5%/ Ah
Ey and B are the tangential components of the electric . ! ]

. . . . (1) ery i '
field in media 1 and 2 respectively. A a  Et!

Consider the rectangular path ABCDA at the D < , C—
boundary such that it encloses both the media. 2 jé Al —

1 1

We know that static electric field is a conservative field.

GE . dl=0

Apply this equation to the contouLAQCDA under limiting condit®h 0.
AE . dl +AE . dl +AE . dl +AE . dl = 0.

AB BC CD DA

AsAh 0, second and fourth terms tends to zero.
Et, Aadl T Et1Fd| =0
EtLbAlT EL Al=0

\ Eti= Eb

Statement: Tangential components of electric field intensity vector are equal and they are continuous
at the interface.

Relation between angle of incidenceg() and angle of emergenceg):

Assume interface does not contain any surface charge

2
Apply boundary condition for D, )}/
Dn; =Dy [Q rs=0] (2) &2 e

D2COS:]2 =D, cogx (1) €1 Elt: Elsinql E2t =_E28|nq2
&Ecoq); = e Ejcoq); - (1) o}
Apply boundary conditiofor E, B
Ex = Exnt E
EzSiﬂC]z = Elsinql ---- (2) Dni=D; COS:]]_
(2)- (1)
_Essing, = Esing
eExcoq), eiEicoq)y
\ Tamy; = er_l
Tang, e

If e, &2 and angle of incidence are given, angle of emergence can be calculated using the above
equation.
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TOPIC 1 5: CAPACITANCE

Capacitor is formed using two conducting media with an insulator in between them.

Capacitance is the property of a dielectric to store electrical energy. Amiceligeld is
present between the plates since a voltage is applied between them. The dielectric is subjected to
electric stress and strain. Therefore some energy can be stored in the dielectric. Capacitance is similar
to inertia. The speed of a vehiclanmot change suddenly due to inertia. Similarly voltage across

capacitor cannot changeddenly.

Capacitance of a parallel plate capacitor:

We knowthat, c= QN

Jf;}

—
(@)
1

=[g

Capacitance of parallel plate capacitor with two media

V=Vi+V,
= E1d1+ E2d2
= (D/ey) di + (D/ &) dp

= (Q/Ae) d; + (Q/Ae)d;

di d
=Q/A|— + —%

V=CV dl+g
e

Al€&
A
C=
G Oy
@81 el

| fir da|
AE.JI |

Is(Area)

~ /N AN
Arsi. dx1

!

|

+++/x=d
l l Electric field

x=0

|

where A = cross section area of plate
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_d +_dé
€1 (S7)

Note: If n number of dielectrics are present, the equation can be written as

C=6gA
\ d
S_i

=1

Capacitance of Spherical capacitor:
Consider a Gaussian sphere.

Apply Gaussobs | aw
D.da = Qnclosed
D.4pr’=Q

>
\E=Q/p e
electric field exists only in the direction of

a a
we know, Vv=AEd =-f Ql4p & . dr
b b

= Q/4p dl/a- 1/b]

Q=4p &ab
bi a

substitute Q = CV

CV=4p e b
bi a

C =4p eab
bi a

Capacitance of cylindrical capacitor (or) cable:

Consider a Gaussian cylinder (G).

Apply Gaussobs | aw
D.da = Qnclosed
D.2prl =Q
>
E=Q r [ I=1mi
2p e
we knowthat, a
V=-AE.dr
b

<_

\
\
-

<<
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a
=-Ai_Q dr
bop e

b
= Q [In1]
2p e a

= Q [Inbi Ina]
2p e

V= Q In(bla)
2p e

Substitute Q = CV

C=2pe
In(b/a)

Farad/m

Note: To calculate the total capacitance, multiply with total length

Capacitance of a 2wire transmission line:

Single phase transmission line is shown. Conductors A and B are

uniformly chargedwith +r_ ¢/m and-r _ c/m respectively.Radiusof

each conductor i s oO6r o0
di stance 6x6 meters fr

and spa
om t he

A

to wires A and B respectively. Riction of electric field is away from

the positive charge or towards the negativarge.

C=_pe
In((d-r)/r) F/m

Let C' be the capacitance per conductor.

C=c¢dxcd=¢c_
c+c 2

= 2C

c=_2pe | F/m/conductor
In ((d-r)/r)

Energy stored in capacitor:
we know that energy

n
W =1/2S q v(p)
i=1
= 1/21(r da) v
S
=1/2 rgv iida
S

=1/2xQxV x &
ys
=1/2QV [ Q=CV]

stored

=]

o]
¥ ._‘::

=
—

+
C
re

and the point P is (&). Ex and E are the electric field intensities du‘ﬁr

X —><—d-Xx

g
e

rl EAe
Es

(d-n)

!

Ref

d

n

+ +|+ + +

C

B
P g
its d@ meter s.
The

di st ¢



W = 1/2 cv* | Joules

Energy density = Energy
Volume
=1/2 ¢V
Axd

=1/2x1x eA X'V
Axd d
= (1/2)e (v/d) [ vid=E]
= 1/2eE?
=1/2 €E) E
=1/2 DE

D and E can be written as D.E since D & E are in same direction
\ Energy density = 1/D.E
Energy = 1/2 D.E xvolume

> >

W = 1/2AD.E dv
\

Force of Attraction between plates:
A
Between the oppositely charged plates there is a force of
attraction. F is an externally applied force to move the plate B fsom
p: to p.. The work done is stored in the form of energy in|the, .

F
additionalvolume Adx. +
Work done = Additional energy +
F dx = (Energydensity)volume d

F g% = ( 1/2eE%) Adx
F = 1/2eE°A Newtons
F/A = 1/2 eE? N/m?

Force /unit area = 1/&2
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Classification of currents:
For theoretical convenience currents can be classified into 3 types
a) Line currents b) Surface currents ¢) Volume currents

Line Currents 5
/A//(_ ' om
, Al7

Motion of electric charges along a line represents a line current. Every line current is
associated with a mobile line charge denisit/m. An elementary segmeAt = V A t along there
current. The amount of mobile charge contained at any instant within the elementary segment is
where 6V6 is the velocity of the charges.

| (VAL ) .
All these mobile charges coming out of segmemtiseonds is called current.
| = | (VAL
M
>
?: | T/ wherel =1/V = mobile line charge density

s c/n?

Surface Currents:

Flow of electric charges over a surface represents surface currents. Every surface current is

associated with a mobile surface charge dessit?.
Consider a surface current sheet with mobile surface charge dewsitg and an

elementary rectangle ABCD.
The amount of mobile charges contained at any instant within the elementary rectangle is
mobilae ycharcgas gwWidtérindhi hlye oalt e

is Al.(VAt ) 6. Al |l these
called current.

Al = S&Q(\h&t)

AT

Al=s VA

Al-sv=k

Alx

=

%
K=sV | ,A/m N _
where K = surface current density, A/m
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Volume Currents:

Flow of electric charges over a volume represents volume currents. Every volume current is
associated with a mobile volume charge densitym®. Considering an elementary cylinder within

the volume current region, the amouAa(VAf)omobil e ¢
Al'l these elementary mobil e charAAteds scécnoinndgs o ut
called current.
Al =rAa (VAL
At
Al = rvAa
Al vz
a
\ > 2 Am
= > .
J=rv Where J = Volume current density, A/m
Continuity Equation: r c/md
g g TN Enclosing
yy dv surface

Let us consider a region carrying volume currents. For convenience let the charges flow
outward. The net outward current through the enclosing surface can be obtained as.

| =/ .da | - (1) [ from volumecurrents]

And also, the rate of reduction of electric charges within the encloser.

=-didtAr dv - (2)
Vv

According to the law of conservation of charges the above two equations are equal

> >
©® d. da=-d/dtir dv

S \%

According to the fundamegtal theorem of divergence
AD . J) dv = Wt fir dv [ only one variable]
Vv Vv

Integration is done with respect to volume and differentiation is done with respect to time.
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Thereforgu/pt can be taken inside the integral since the variables are different.

A .J) dv = AU o/ pt) dv
Y, Vv

K M " bgdiation 5
B.J=-pru axwe qoaion.

The above equation is called continuity equation
Divergence of J gives net outflow of current per unit volume.

Net overflow of current per unit volume is negative of time rate of charge per unit volume. The above
equation is a&o called as law of conservation of charge.

The above equation explains continuity of current. According to law of conservation of
charge, charge can be neither created nor destroyed. Some charge keeps flowing in the circuit.
Existing charge cannot be dies/ed and new charge cannot be created.

Ohmés Law: 1t —> E _
+>—'_+HJ :—<:
+<A+ __B}:
= =

[ | |

I
!
\%

Current flowing through a conductor is directly proportional to the potential difference across
it, provided temperature is kept constant.

|~V
The proportionality constant is conductance
=GV

=V/R

[1/r =s]

The above equation is called point form or fi

Joul ebs Law:

According to Joules law, whenever current flows through a conductor, heat energy is
produced. This is proportional t§ R and t.

Heat Energy I°Rt
Energy’ (I°Rt)/J Wheredi s cal loemdtanf.oul e 6 s
We know that power R = V?/R = VI
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Multiply and divide with volume
P=VI.A/AI

Rearrange the terms,
P=Vs (Al
I A

Substitute E =M/ J = I/A and volume = A
\ P =EJvolume

EJ can be written as E.J since E and J are in the same direction

P= ?J)volume
\ P =AE J) dv
\Y
According to Jouleds | aw, energy dissipated pe

the vectors E and J.

Relaxation Time:

To gtuédy rel axation time we start with ohmés |
J=sEandb.J=-(u r/ )
b.sEz- (1 /)
D.esE=-(u 1/ )
S e_} -ur
oP.D= m
sr+ur=0
e it
ur+tsr =
\ it e

r =roe®® wherer, is charge density at t = 0.
The charge density decays exponentially as time passes with time constant egualettonds.
This time constant is called relaxation time.

Conductancei Capacitance Theorem:
G = Conductance, C = Capacitance
s = Conductivity,e = permittivity r =resistivity

According to conductance theorem, conductance of an insulated medium is eqlal to
times the capacitance of the insulation provided between two conducting media.
G=c/eC
WeknowthatC$ A/landR=I/AY G=A/rl=sA/l
\' G =sA
C eA

G=(leC

This theorem is very useful to obtain the expression for conductance of the configuration if
capacitance of that configuration is already known. Conductance can be obtained by multiplying
capacitance expression Wil .
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Observation: .
We knowthatlﬂ@%.da
S
Substitutes®ehmés | aw J =

> >
| =@ &E.da @)
s
According to Gauss lavg, = Q
A MD. da=Q
S 2> >
@E.da =Qe @
s
Compare (1) an(R)

I=s.(Q/e

Substitute | = V/IR and Q €V
X¥=s.CV/
R e

Pl

Duality:

If two equations are in similar form, they are said to be dual equations.

Duality means that it is possible to pass from one equation to another equation by suitable
interchanges of dual quantities.

We know that the conductance of the dielectric between the platésliapacitance is
eA/l. If we know the capacitance of cagiiration, conductance of that configuration can be obtained
by merely replacing with s.

For example capacitance of cylindrical capacitor is

C =[(20 ¥/ log(b/a)]

Conductance can bebdotwséa.hnéd by replacing 0
\ G=[(2p 9/log(b/a)]
similarly,
Conductance of spherical capacitor is, Cg @b) / (bi a)
Conductance can bebotwséa.hnéd by replacing 0
\ G=(4 sb)/ (b a)
Thereforee ands are dual quantities.

Basic Properties of conductors:

1) Electric field is zero inside a conductdfrthere is a field inside, the charges experience a force and
they move outwards. Therefore, there is no chenrgjde.

Q=0,D=0andE=0

2) The charges can only reside on the surface of the conductor and not rmndieietor.

3) Conductor is an equipotentiagion.

4) Electric field intensity at all points on the surface of a conductor must be normaktarfiee.

5) Electric charges located outside a conductor cannot produce an electric field inside a completely
closed cavity withn theconductor.
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OBJECTIVES

One Mark Questions

. The mica layerd = 7) in a parallel plate capacitor with an effective area of 120mm has a
damaged section equivalent to a hole of 0.5mm diameter. Which of the following would be
significantly affectedy damage. (GATEOG691, EEE)

a) capacitance b) charge c) dielectricbreakdown d) tand

.Which of theéfglal 0O Wi ng equatigns r erpediens?ent s t he
a)®b.ds =i i dVv b)V3H=D c)b.J+r=0 d)b.E=rle ( GATE692, EEE)

.The |l ine integral of the vector nmnmwesemtati al A ar ol
a) flux through in thesurface S b) flux density in thesurface S ( GATEG693, EEE)
C) magnetic density d) Current density

. When a charge is given éconductor ( GATEHEB)4 ,
a) it distributes uniformly all over thgurface
b) it distributes uniformly all over theolume
c) it distributes on the surface, inversely proportional to the radiagreéture
d) it stays where it waglaced

. Energy stored in a capacitor over a cycle, when excited by aouagcsis ( GATEG697)
a) the same as that due to a d.c source of equivalaghitude
b) half of that due to d.c source of equivaler@gnitude
C) zero d) none

. When the plate area of a parallel plate capacitor is increased keeping the capacitor voltage
constant, the force between the plates ( GATEG99)
a) increases b) decreases c) remaingonstant
d) may increase or decrease depending on the metal making up the plates

. The potential difference between the forces A and B of a uniformly polarized infinitehslain
in figure. (I ES693)

A

) pd /eg(e- 1) ) B

e s
B

dpde+1)/e T T T

. If & is the polarization vector and K is the direction of propagation of a placeomagnetic

wave,then . . 9( | ES693)
a)f =K byh =- K Oh.K=0 d)yh3s K=0
. Consider the following statements regarding fisbdindary conditions: (I ES695)
1. The tangential component of electric field is continuous across the boundary bgtween
dielectrics.

2. The tangential component of electric field at a diele¢teonductor boundary is nanzero
3. The discontinuity in the normal component of the flux density at a dielectric conductor
boundary is equal to the surface charge density oocath@uctor.
4. The normal component of the flux density is continuous across the charge free boundary
between two diectrics.
Of these statements
a)1,2 & 3arecorrect b) 2,3 & 4arecorrect c¢) 1,2 & 4 are correct d) 1,3 & 4 arecorrect
(Contd €42)



10. Consider the following statements associated with a papédliglcapacitor. ( | ES 6 95)
1. Capacitor is proportional to area of plates
2. Capacitance is inversely proportional to distance of separatates
3. The dielectric material is in a stateaaimpression.
Of these statements
a)l,2 & 3 arecorrect b)) 1 & 2 arecorrect c) 1 &3 are correct d) 2 & 3 arecorrect

11. Two electric dipoles aligned parallel to each other and having the same axis exert a force F on

each other, when a distance 6d6 apart. I f the d
force between thenvould be: (1 ES695)
a)F/2 b) F/4 c)F/8 d) F/16
12. When a lossy capacitor with a dielectric of permittivatgnd conductivitys operates at a
frequencyw, the loss tangent for the capacitogigenby (I ES695)
ayws/e bywe's c)s/we ds we
13. The properties of mediumare (NTPCG698)
a) permittivity, permeability insulation b) permittivity, permeabilityconductivity
c) permeabilityyesistivity, inductivity d) permeability, flux, magnetism
14. The characteristic impedance of aicaxial cabledepenls on (CIVIL SERVICES)

1. ratio of outer and innatiameter

2. length of the cable

3. logarithmic ratio of outer and inndrameter

4. logarithmic ratio of outer and inner diameter and inversely as the square root of dielectric

constant.
The correct statements are
a)3&4 b) 2& 3 c)1,3,4 d) 4only
15. The unit ofme is (NTPC698)
a)Farad Henry b)nmf/seé¢ c)amp secvoltsec d) Newtonmetré/coulomi
16.Ki rchoffds current | awthdexpressidn r ecitl Ecubror7e)nt s i s i
N > > >
a)E).f):f b)nﬁ.nds:O c)b.B=0 d)b3 H=J+uD/ut
1727Poi ssonb6s equati omediumis an i nh o mo(gleenSeéo9u7s)
a)e BV =-r b)D.(e ®)=-r c)D%(eV) =-r d)b.®O&)=-r

18. A material is described by the following electrical parameters as a frequency of 1GGHZP
mho / m,m=my ands / so = 10. The material at this frequency is considerdakto

(so=1/36 3 10° F/m) ( GATEG693)
a) a good conductor b) a goodlielectric
c) neither a good conductor nog@oddielectric d) a good magnetic material
19. Copper behavessa ( GATEG695)
a) conductoralways b) conductor (or) dielectric on the applied electric fetléngth

c¢) conductor (or) dielectric depending on thequency
d) conductor(or) dielectric depending on the electric curreansity

20. For adipole antenna ( GATEG694)
a) The radiation intensity is maximum along the normal to the digpake
b) The current distribution along the length is uniform irrespective detigth
c) The effective length equals its physitahgth
d) The input impedance is independent of the location of theifpeht
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21. The intrinsal impedance of a lossy dielectnedium isgivenby (GATEG695)
a)jwms b) jw & m c)Ojwni (s +jw ¢ d) O me

22. An antenna, when radiating, has a highly directional radiation pattern. When the astenna
receiving, itsradiation pattern ( GATEG695)
a)is more directive b) is lesdirective  c)is same  d) exhibits no directivity aall

Two Mark Questions

1. A composite parallel capacitor is made up of two different materials with different thickness (t
and t) as shown. The two different dielectric materials are separated by a conductivity foil F. The

voltage of the conductivitioil is. ( GATEBEER ,
a)52Vv
b) 60V ern=34=05mm| . ARV
e=4;b=1mm
c)67V
ov
d) 33V

2. A parallel plate capacitor has an electrode area of 108) with a spacing of 0.1 mm between the
electrodes. The dielectric between the plates is air with a permittivity of 865> F/m. The
charge on the capacitor is 100V. The stored energy icejhecitons ( GAT EBHEER ,
a)8.85 PJ b) 440 PJ c) 22.1 nJ d) 44.3 nJ

3. A circular ring carrying a uniformly distributed charge Q and a point chakgem the axis of the
ring are shown. The magnitude of the dipole moment of the chgstemis ( | E SBEE)3 ,

a) Qd T1Q
b) QR?/ d d
Q) Q R+ &P @
d) OR
Q
4. Find the polarization in a dielectric material wighe 2.8 if D = 33 107 /.
a) 1.93 107 ¢/n? b) 10*° c/n? c) 6.6028 102 c/n? d)o

5. Determine the value of electric field in a dielectric material for which3.5 and P is 2.3 10"

c/n?.
a) 7.9% 10° b) 62.13 10° c) 74.33 107 d) 833 10°

6. Calculate the emerging angle by which the vector E changes its direction as it passes from a
medium withe = 100 into air making an angle of 4&ith the interface as énters
a) 90 b) 0.57 c) 0.89 d) 45

7. Electric flux lines are incident in the polai insulator ofl = 6 at an angle of 45The electric
field in the insulator is 1000V/m. Determine the electric field in the air and the angle at which flux
lines are emergingut
a) 0.46,400V/cm  b) 2.25, 4000 V/cm C) 7.2,4925V/cm d) 9.46, 4302V/cm
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Linked Question from Q.No 8 to 11

A parallel plate capacitor consists of two square metal plates of side 500 mm and separated by
a 10 mm slab of Teflon witg = 2 and 6mm thickness is placed on the lower plate leaving an air gap
of 4mm thick between &nd upper plate. A 100V is applied across capacitor.

8. Find the capacitance between fiates
a)2.23 10°F b) 3.16% 10'°F c) 4.263 10°F d) zero

9. Find the electric flux density of Teflon and air
a) 0.12mc/n?, 0.12ne/m”  b) 0.35nt/n?, 0.12nt/m?  ¢) 0.11nt/n?, 0.35nc/m?  d) 0, 0

10.Find the electric field intensity of Teflon aad

a) 12555 V/mp776Vim b) 13553 V/Im, 677&/m
c) 0,5826V/m d) 38265 V/m, 3826%/m
11.Find the electric potential of Teflon aad
a) 54.21 V40.66V b) 34.11V34.11V c)0,0 d1.1V,24
122Two conducting planes are | ocated at Z equal

mm there is a perfect dielectric wigh, = 2, for 2 < Z <5 mmer, = 5. Find the capacitance per
square meter of surface if thegion for 5 < Z < 6 mm is filled withir.
a) 2.8nF/nf b) 3.4nF/nt c) 1.1nF/nf d) 2.2nF/n?

13.A 2 nF capacitor is charged by connecting it across 100V D.C supply. The supply is now
disconnected and the capacitor is connected in parallel with anottergad &F capacitor.
Assuming no leakage of charge, determine the energy stocagacitor.

a) 0.01Joules b) 0.005 Joules ¢) 1.15 Joules d) 0.5 Joules

14.A parallel plate capacitor with air as dielectric has a plate aregoadr8band separation dfnm.
It is charged to 100V by connecting it across a battery. If the battery is disconnected and distance
is increased to 2mm, calculate the energy stored, assuming no leakhgegef
a) 0.6% 10° Joules b) 0.23 10* Joules  c) 0.233 10* Joules d) 13 10° Joules

15.A Coi axial capacitor of the compressed gas type is to be designed to Hat@ B
capacitance and is to work at 200 KV dc. The maximum voltage gradient should not exceed
300KV per cm. If the outside diameter of the inner conductor is 5cm, determine the inner
diameter of the outer conductor and length of capacitor. Take the reletmétjvity of gas to be
1.0.

a) 3.1 cm) =5m b)4.2cm] =1m c)8.3cm)=7m d)5.7cm)=7m

Key:
One Marks:

lc 2a 3a 4a 5c 6a 7a 8c 9d 10.a 11d 12.c 13.b 14d
15.b 16.b 17.a 18.a 19.a 20.a 21.c 22c

Two Marks:

b 2d 3a 4a 5c¢c 6b 7d 8b 9a 10b 11.a 12b 13.b 14d

15.d
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TOPIC i 7:BIOTi SAV ARTAS EMF

Magnetostatics deals with magnetic field produced by current carrying conductor.

Magnetic field:

A static magnetic field can be produced from a permanent magnet or a current carrying
conductor. A steady current of | amperes flowing in a straight condpotdiuces magnetic field
around it. The field exists as concentric circles having centres at the axis of conductor.

If you hold the current carrying conductor by the right hand so that the thumb points the
direction of current flow, then the fingers poihetdirection of magnetic field. The unit of magnetic
flux is weber. One weber equals®Ihaxwells.

Magnetic flux density (B):
The magnetic flux per unit area is called magnetic flux density (or) magnetic induction vector.
The unit of B is weber/f(or) Teda.

The magnetic flux through any surface is the surface integral of the normal component of B.
The magnitude and direction of B dueisavarttugrerl
| awod .

B =df /da
df =B .da
f:ﬁﬁg.(j;a

S

Magnetomotive force ( M.M.F)

M.M.F is produced when an electric current flows through a coil of several turns. The M.M.F
depends on the current and the number of turns. Therefore, the unit for M.M.F is ampere turns. MMF
is the cause that produces flux imagnetic circuit.

Reluctance (s):
Reluctance is the opposition to the establishment of magnetic flux and can be defined as the
ratio of M.M.F to the flux produced.

It is directly proportional to the length of the magnetic path and inversely t@riss
sectional area of the path. The reciprocal of reluctance is dalRdE R MEANCE 0 .

Bioti Savartés Law ( second Maxwel |l i's equation):

&/9{"

BIOT and SAVART from their experimental observation deduced a mathematical expression
for the elementary magnetic flux density produced by a current element at any particular point of
observation (p). Accordingtothisaw consi dering a current el ement
01 6, the magnetic flux density at a point of obs:é
Magnetic field intensity due to entire conductor can be obtained by line integral.

H=ﬁﬁx?

4p ||

3 e
B =m/4pr° Nidl x r [ B=nH]
Taking divergence on both sides,

div.B = mydp| r F Aidiv (dl x7)
(Contc



we know thab . ( u>x ?) = 7. curl l?curl v

div (Idi x7) =% . curl 1dii idT, curl P
bB=m__ ﬁ(? curl |C?|T Id?curl ?)
4p| rf

Curl deals with_rotation. The current element vector and distance vector have no rotation.
Therefore curl of Tdl and curl of vanish.

bB=m ﬁ(o i 0)
4p|rf

pB=0| Maxwe Meduaton2

This equation is called point form, field form, vector form or differential form of BIOT
SAVART | aw. It is also called second Maxwell 6s ec

Magnetic field due to an infinite straight conducbr

Z_ | c/m
31/

i

1 \y

Consider an infinite straight conductor along theaxis and carrying a current | along the
positive Zd i r ect i on. Let O6p6 be -yhpl poénat od odobseawvacti

axis.

Letﬁz small current element
We know that,

Pepet

Net magnetic field,
o]

B =m /4p Ordz / (2 + D)2

-0

7)B=m,I/2prf
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Magnetic field due to a finite conductor:

z
N Db
dl
M
z
| T
i Y
6
4 P
X '
M
Let us consider a finite conductor of length MN, for the sake of generality ON\ . Let

point of observation on XY plane.

\ Net magnetic field

E =m) ( cosaa - cod) f
4pr

Corollary -1:
Magnetic field due to infinite conductor
iea=0,b=18C
\ % =ml.f
2pr
Corollary -2:
Magnetic field due to semi infinite conductor
~ =90, b=18C
% =ml.f
4pr
Corollary -3:
Magnetic field due to finite along the perpendicular bisector
i.e OM = ON
a=180b

\ E:@I_.cos.':lfA

2pr

(Contc
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Magnetic field due to a circular current carrying loop along its axis:

X

Consider a circul ar typlanp with €entre atdrigin and damytngd yi n g
current | as shown.

Let the point of observation 6épbdé be at a dist
two diametrically opposite current element located at A & B.

Let dBs & dBg vectors are corresponding elementary magnetic flux densities at P. Resolving
dBa & dBg vectors horizontal and vertical components, we find that horizontal components get
cancelled and vertical components added up.

\ Net magnetic field Ezm)l 2 5
Zza2+d2)3/2

Corollary -1:

Magnetic field due to circular current carrying loop at its centre i.e d = o.

\ B=ml 2"
2a

Corollary -2:

Magnetic field due to a semicircular current carrying loop at its centre

B=miz” k
\ 4a

Corollary -3:

Magnetic field due to a thin circular coil of

<
B=mNI&®. 2 Nturns
2(a2+d2)3/2

(Contd €é€49)
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Magnetic field due to an infinite circular solenoidal along its axis:

_____ N NAnAnANn edx'v______
*a
-Z ———————— Y eeeoeeo---> X-axis
0 X
9
""" (VAVAVAVAVAVAYAV)
| N
Let Uus consider an infinite circular sol enoi d:

(n=N/l) and carrying a current I. Let the axis of a solenoid coincides wattisxand origin coincides
with the point of observation. Consider an elementali c k ness 6dx6 at a distanc

Therefore, the elemental magnetic flux density due to this elemental section at point of
observation 606 is given by

dB =m (ndx) l&
2(& + X2)3/2

\ Net magnetic field| B =mynl

The magnetic field due to an infinite circular solenoid is totally confined within the solenoid,
uniform and axially directed and is equal to Bgnl.

The direction of the magnetic field depends on the sense of current carrying by the solenoid
and the mght hand screw rule.

Magnetic field due to a finite circular solenoid along its axis:
1/2 i 1/2
AAAAAN AA QAN <dxs

X

R

K > Y X g
; < (/2-d)—>!
— I e ———

Let us consider a finite circular solenoid of
per unit |l ength and 616 be the carrying -<current.
axis and the origin cohecpdiest wot hobeetveti adet ab,|
centre.

\ E =mnl (codh+cos)
2

Corollary -1:
Magnetic field due to an infinite circular solenoid
i,ea=0,b=0

\ | B=mnl

(Contd €50)
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Corollary -2:

Magnetic field due to a finite circular solenoid at the centre
iea=Db

B =mnl cosa

Corollary -3:
Magnetic field at the end of a finite circular solenoid
b=9C, a
B =mnl cosa
2

Magnetic field due to an infinite surface current sheet: i
B

xy-plane

Y

Let us consider an infinite current sheet lying eyplane carrying a surface current along
the positive xdirection (‘K') with a surface current dendity

Each strip carries an elementary current dl = kdy.

Net magnetic field B= mk (9)
2

It the point of observation is below the surface current sheet, then

B=mkj"
2

Note:
The magnetic field due to an infinite surface current sheet is independent of the distance of the point

of observation from the sheet. The magnetic field du/g to an infinite sheet is a constant magnitude of
mk /2 and has a direction given by the vector product of k x n. Where n is a unit vector normal to the
sheet directed away from the sheet towards the point of observation.

(Contd é51)
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When the magnetic field has some form of symmetry the magnetic flux density can be

determined with the

Consider an infinite straight conductor lying along the
Z-axis carrying a current | along the +veaZx i s . Let

closed path enveloping around the conductor. Considering any point

application

of |l aw known as /

L Z

«<—Ampereos

6c O bk he |00p

OP6 on the closed path, the magnet]|i c l ux densit)
given by :
4
L =
~ 2pr '
- AN N
dl = (dryP+ (rd)F+(dzy2 [cylindrical system]
B.d="
B. _2prr
2p
> > ml
#B.d = 2pr r A df
C 0
:n’b]
B . d = M lenciosed Ampereds |l aw in integral form
C
Statement : Considering any closed path in a magnetic field the line integral of tangential
component of the magnetic field around the closed path is equgtitoes currenenclosed.
Di fferential form of Ampereds Law:
> =
ﬁB-dl = Mlenclosed
> = > >
ﬁ(ﬁxB).da:mﬁ ﬁ.da
> >
DxB=mJ
(or)
. : : R
DxH=] Point from (tbeq)JatldVIaxweIIos 4
2. Variation of Magnetic flux density (B) due to a circularconductor: 4
A solid cylindrical conduct or/o;Qadi us oO0abd c:
6 | 0o ~—1
/"—\
Inside (r<a) : ——5
Considering the ampere | oop A|l..agpd _Japplying Amj
x N | S
§i = Lly_l’f
2pa’
\ Bar (Contd é52)
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Outside (r>a) :

Considering an ampere Loop And applying
Ampereds Law,

§o = m.J_fA
2pr

Baillr

ml
2pa

3. Variation of Magnetic flux density (B) due to Hallowconductor

Case(i): (r<a)

Construct an AmpeRrmeds

Apply Ampereds Law

Bi:0

Case (ii): (a<r<bhb)

Construct an ampAemrpeedrse 6lso oLpa wa

. m (%) f
- 2pr (0%

Case(iii): (r>b)

Construct an ampereds

A
- mlf
% 2pr

4. Variation of Magnetic flux density (B) due to a pair of coaxial transmission lineonductors

Casel:(0<r<a)

l oop

a

Loop ’s @b, tvhat

nd apply Ampereos

4

L a

Considering an ampere | oop and%pj%zn\g Amper eods
2> A
By = mlr f /\a

ml r <
20 ?%@f :
Case ll: (a< r<bh) /| L,_L/,I
gz = ml 1/:\ % /|//
2pr 7
Case Ill: (b<r<c) N _ %il e,
Bs=_ml () f z
2pr  (c*-b?)
Case IV:(r>c) —
B4 =0
(Cont d
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1. Maxwel |l 6s Equa

Differential Form

1.DivD=r
2.DivB=0
3.Curl E =-uB
pt
4.CurlH=J+pD
pt
5.Divl=-pur
pt
2Maxwel |l 6s Equati
1. DivD=r
2. DivB=0
3. CulE=0
4. CurlH=J
5. DivJ=0
3.Maxwel | 6s Elgaleatrics:

1. DivD=0
2. DivB=0
3. Curl E =- (uB/ut)
4. Curl H= (uD/ut)
5 DivJ=0
xwel |l 0s
1. DivD=0
2. DivB=0
6. Curl E = (uB/ut)
3. CurlH=1J
4. Divd=0
5.Maxwel | 6s
1. DivD=0
2. DivB=0
3. Curl E =- (uB/ut)
Curl H = (uD/ut)
DivJ=0
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